From Relative to Absolute Antenna Phase Center Corrections

Ralf Schmid
Institut für Astronomische und Physikalische Geodäsie, TU München

Gerry Mader
US Department of Commerce, NOAA, Geoscience Research Division

Tom Herring
Massachusetts Institute of Technology
Current Situation

- GPS antenna offsets and phase center variations (PCVs) are critical part of measurement chain
- Relative calibrations (wrt AOAD/M_T) currently in use;
 - Inadequate for long baselines
 - Long term problems with vertical reference system
 - No calibration below 10 degrees elevation
- Absolute calibrations determined from robot measurements & anechoic chamber
- Satellite calibrations currently not in use
- Given satellite phase center offset, PCVs need to be determined from observations?
- Satellite calibrations must be coordinated with absolute antenna calibrations – constrained scale needed?
- Azimuthal effects not included (ANTEX proposed)
Oral Presentations

• New Anechoic Chamber Results and Comparison with Field and Robot Techniques Görres, Campbell, Siemes, Becker

• Estimation and Validation of the IGS Absolute Antenna Phase Center Variations Ge, Gendt

• Impact of Absolute Antenna Phase Center Corrections on Global GPS Solutions Schmid, Thaller, Steigenberger, Rothacher, Krügel

• The Effect of SCIGN Domes on the Vertical Phase Centre Position in Routine Data Analysis Schmidt, Dragert, Lu, Schofield

• Local Monitoring of a Fundamental Site with GPS Rothacher, Lechner, Schlüter
Poster Presentations

• Size Reduction of GPS Antenna’s Ground Planes with High Level of Multipath Protection, Tatarnikov

• The Impact of the PCV Parameters in the Coordinates Estimates, Barzaghi, Borghi

• The Effect of SCIGN Domes on the Vertical Phase Centre Position in Routine Data Analysis, Schmidt, Dragert, Lu, Schofield

• Absolute Field Calibration of Carrier Phase Multipath with a Precise Robot, Dilßner, Seeber, Feldmann, Wübbena, Schmitz, Bachmann
• Agreement between anechoic chamber and robot absolute calibrations is excellent.
• Satellite phase center offset comparisons are fair, while satellite PCV agreement is excellent.
• Satellite calibrations are not consistent within a block.
• Absolute calibrations show time series jumps but less elevation cutoff dependence and improved tropospheric comparisons.
• Radomes can introduce variable amounts of elevation dependent phase changes which distorts height.
• Local networks and antenna/receiver arrays may be necessary for reference frame maintenance at 1 mm-level over decades.
Issues

- Correlation between satellite antenna phase center offsets and terrestrial scale
- Time dependence of the terrestrial scale as the mix of satellite types changes
- Timing of the switch from relative to absolute antenna phase center models:
 - Quantification of magnitudes of effects and decision on when effects are well enough known to warrant re-processing.
 - Expectation is that re-processing will need to be repeated a number of times over the next decade.
Recommendations of Position Paper

- **Antenna / Radome combinations**
 - Avoid whenever possible
 - Forbid domes that do not have reproducible calibrations
 - Allow only domes mountable with reproducible physical relation to the antenna
 - Enter calibrated combinations into igs_01.pcv
- **Introduce antenna subgroups into rcvr_ant.tab & igs_01.pcv**
- **Ideally IGS00 sites should install local antenna arrays for long term stability.**
- **ANTEX format needs to be officially adopted.**
Timescale for decision on absolute phase center models.

• Absolute receiver & satellite antenna calibrations should be officially adopted:
 – By June 2004: Reconcile satellite antenna phase center patterns and offsets between the groups generating these results.
 – Sep-Dec 2004: IGS AC submission of final products with both relative and absolute phase center models used.
 – March 2005: Adoption of new phase center models

• Issues:
 – Values for old PRNs and blocks (particularly Block I) needed.
 – Possible time dependence of values as fuel expended on satellites.
 – Elevation angle cut off tests with relative and absolute models and orbits free.