Usage of IGS TEC Maps to explain RF Link Degradations by Spread-F, observed on Cluster and other ESA Spacecraft

J. Feltens, J. Dow, G. Billig, D. Fornarelli, S. Pallaschke, B. Smeds, H.-J. Volpp, P. Escoubet, H. Laakso

IGS Workshop & Symposium, Berne, Switzerland, 1 - 5 March 2004
Contents

• Introduction
• Problem description
• The Spread-F phenomenon
• Applicability of Spread-F to observed link anomalies
• Operational consequences for Cluster
• Possible consequences for future ESA spacecraft and missions
• Conclusions
Introduction

• RF link anomalies were observed on the Cluster spacecraft in autumn and spring 2001, 2002 and 2003:
 – Sudden variations of the received RF signal power.
 – The duration of these disturbances ranged from 10 minutes to 4.5 hours, occurrence mostly in the local evening hours.
 – Maspalomas and Villafranca are the nominal tracking sites.

• A cross-disciplinary working group of experts at ESOC and ESTEC started investigations in January 2003:
 – Spread-F could be identified as the source.
 – IGS TEC maps played a key role to relate the observed phenomena to Spread-F.
 – Recommendations for the operations of Cluster and other ESA missions.
Problem Description

Characteristics of the Cluster Mission (1)

– The 4 Cluster spacecraft were launched in July/August 2000.

– Highly eccentric polar orbits with heights ranging between 18000 km and 120000 km, line of apsides initially in the ecliptic plane.

– Ideal tetrahedron constellation in one orbital position, the inter-spacecraft distance ranged from 100 km to 5000 km up to now.

– The argument of perigee increases by about 5 degrees per year due to Moon and Sun attraction, causing the apogee to move southward.

– The orbital period of about 57 hours results in an average visibility from one ground station in the order of 22 hours, subdivided into 2 – 3 passes of typically 10 hours length, for all 4 spacecraft per orbit.
Problem Description

Characteristics of the Cluster Mission (2)

– All science data acquired during non-visibility periods are stored on-board and dumped to ground during the visibility periods.

– Initially, Villafranca was the only nominal ground station. Maspalomas became the second nominal ground station in September 2002.

– Nominally SC1 and SC2 are tracked from Villafranca, SC3 and SC4 are tracked from Maspalomas.

– The Telemetry & Telecommand uplink frequency is 2064 – 2077 MHz, the downlink frequency is 2242 – 2256 MHz.
Problem Description

Observed phenomena (1)

The uplink/downlink RF signal power is monitored via the receiver Automatic Gain Control (AGC) on-board resp. at the ground station.

- The AGC level of the satellite receiver shows strong and fast fluctuations as increasing and decreasing signal strength.
- The AGC level of the ground station receiver shows the same behavior.
- If the variations are too strong, data dump has to be stopped to avoid data losses.
- It is vital that enough time is available to downlink the data stored on-board before they get overwritten.
Problem Description

Observed phenomena (2)

– 23 events were registered until May 2002 at Villafranca, no event was observed at Redu from May – September 2002.

– Of a total of 96 passes for SC3 and SC4, 33 have been affected between mid September and end of October 2002 at Maspalomas.

– From 16 September – 31 December 2002 4 events were observed at Villafranca and 54 events at Maspalomas.

– All passes with fluctuations as seen from Maspalomas were in a window with an elevation <60 degrees and an azimuth range between 90 - 240 degrees, i.e. into the southern direction.
Problem Description

Observed phenomena (3)

– 91% of the documented events occurred in the September - December period, and they appeared during late evening hours between 19:50 to 02:00 UT.

– Due to the Cluster orbit and position of apogee relative to the Sun, most of the pass time in autumn is in the late afternoon up to early morning.

– The inspection of recent tracking data indicates enhanced presence of RF link disturbances at Maspalomas also for September – December 2003.
The Spread-F phenomenon

Creation of Spread-F

- Upwelling flux tubes of reduced plasma density “plasma bubbles” above the geomagnetic equator, their diameter is 20 – 200 km.

- After reaching the apex height in the geomagnetic equatorial plane around post-sunset, they move on either side of the geomagnetic equator and break into small patches.

- Around 18:00 LT there can be a strong increase in the east-bound E-vector, causing the F-layer to move upwards due to Lorentz force.

- Around 21:00 LT the E-field reverses and directs to west. Lorenz force causes the F-region now to come down, and it can then become unstable.

* Effect on radio links: steep variations of the signal strength (scintillations).
The Spread-F phenomenon

Spread-F requires

- Well-developed eastward E-field at the geomagnetic equator.
- Sharp raise of the F-layer’s height around sunset (above ~ 400 km).
- Geomagnetic storms (induced by Sun).
- The european longitude sector is stronger affected than others.
- Spread-F occurs within ~ ±15° lat. of geomagnetic equator between 400-1000 km altitude, primarily between 20:00-23:00 LT, but also in the post midnight sector during high geomagnetic sub-storms (induced by Earth).
Applicability of Spread-F to observed link anomalies

Cluster (1)

– IGS TEC maps were used to find out whether the affected RF links passed through potential areas of Spread-F.
– For the majority of the reported anomalies this could be confirmed.
Applicability of Spread-F to observed link anomalies

Cluster (2)

Maspalomas

17:00 ←

19:00 →

Maspalomas

17/10/2002,

SC4 pass from 17:59 – 21:24 UT,

fluctuations from 19:45 UT to pass end.

Maspalomas

21:00 →
Applicability of Spread-F to observed link anomalies

Cluster (3)

19/03/2003

Villafranca

Fluctuations
20:40 – 21:00 UT
on SC4.

Villafranca

Maspalomas

SC3 SC4 →
Applicability of Spread-F to observed link anomalies

MSG-1

06/10/2002

Maspalomas

↔ 21:00 23:00 ↔

Fluctuations
21:00 – 22:30 UT on both days.

07/10/2002

Maspalomas

↔ 21:00 23:00 ↔
Applicability of Spread-F to observed link anomalies

XMM

18/03/2002
Kourou
01:00 03:00

Fluctuations
01:30 – 02:30 UT
on both days.

20/03/2002
Kourou
01:00 03:00
Operational consequences for Cluster

The most practicable consequences:

- Usage of another nominal ground station than Maspalomas, *e.g.* Perth (conflicts with other missions) or 2nd antenna at Villafranca.
- Reduction of the Cluster perigee by 7 – 9 degrees during the next constellation change manoeuvres.

Possible consequences for future ESA spacecraft and missions

Some of the most important consequences:

- Preferably usage of non-equatorial tracking sites.
- Installation of an ionosonde at Maspalomas (at other sites?)?
Conclusions

• The Cluster spacecraft suffer from seasonal link degradations up to complete signal loss.

• A working group of experts from ESOC and ESTEC could identify Spread-F as source of the problem.

 + Several proposals were made by the working group to handle the Spread-F problem in routine operations of the Cluster spacecraft.

 + Recommendations were made how to take care about Spread-F in future missions planning and design.

 + The installation of ionosondes at selected ESA tracking sites for Spread-F forecasts is considered.

 + The relevance of Spread-F for new navigation satellite systems, namely Galileo, should be investigated.

• IGS TEC maps played a key role to relate Spread-F appearance to observed satellite link disturbances at Cluster and other ESA spacecraft.