Relationships between mass redistribution, station position, geocenter, and Earth rotation: Results from IGS GNAAC analysis

Geoff Blewitt
Mackay School of Earth Sciences and Engineering
University of Nevada, Reno

With Contributions from Co-Investigators:
Peter Clarke Richard Gross
David Lavallée Tonie vanDam
John Wahr Konstantin Nurutdinov
Ericos Pavlis
“Three Pillars of Geodesy”
1. Earth’s geometric shape
2. Earth’s gravity field
3. Earth’s orientation in space

All are connected by Earth’s response to mass redistribution
- Earth’s shape dominated by surface mass loading (0.1-10 yr)

Effects of (seasonal) loading:
- (Seasonal) variation in IGS station coordinate time series
 - Degree-0: apparent (seasonal) scale in IGS network
 - biased Helmert transformations, hence frame-related errors
 - Degree-1: real (seasonal) motion of solid Earth center of mass
 - several mm common-mode signal in GPS coordinate time series
 - theory predicts that this is not simply a translation
 - Degree-2: real (seasonal) polar motion from moment of inertia
IGS GNAAC analysis since 1995: polyhedron construction (weekly)

- Solution of orbits & global station positions (“fiducial-free”)
- Combination of several global solutions
- Solution of regional station positions including 3+ global stations
- Combination of several regional solutions
Physical Love-Shida model

- Earth deformation & geoid height all depend on surface mass distribution by load Love numbers (LLNs) within spherical harmonic expansions
 - Total load
 \[T(\Omega) = \sum_{n,m,\Phi} T_{nm}^\Phi Y_{nm}(\Omega) \]
 - Height
 \[H(\Omega) = \sum_{n,m,\Phi} h_n' \cdot \frac{3\rho_S}{(2n+1)\rho_E} T_{nm}^\Phi Y_{nm}(\Omega) \]
 - 2-D Lateral
 \[L(\Omega) = \sum_{n,m,\Phi} l_n' \cdot \frac{3\rho_S}{(2n+1)\rho_E} T_{nm}^\Phi \nabla Y_{nm}(\Omega) \]
 - Geoid
 \[N(\Omega) = \sum_{n,m,\Phi} (1 + k_n') \cdot \frac{3\rho_S}{(2n+1)\rho_E} T_{nm}^\Phi Y_{nm}(\Omega) \]
Load to degree 6 (GPS & Model)

Estimated Load
- GPS

Modeled Load
- Soil moisture, snow depth: Milly et al.
- Atmosphere: NCEP/NCAR reanalysis + inverted barometer
- Ocean circulation: ECCO

Water-equivalent depth of load (mm)

Annual Cosine

Annual Sine
Deg-0: Total mass

- Conservation of surface mass implies
 - degree-0 load = 0
 - average change in Earth radius = 0

- Problem of network scale
 - Scale change = degree-0 deformation
 - …and GPS scale is defined by the speed of light
 - Therefore variation in network scale ought to be zero
 - But scale often used in 7 or 14-parameter transformation
 - So why include scale in Helmert transformations?
 - to remove systematic error in orbit models, etc.?
 - or (incorrectly), to remove apparent scale due to real loading signals that are aliased by the non-uniform IGS network?
 - can lead to frame errors and can bias the load signal
Effect of removing scale on load

- **Top plot**
 - Two step estimation - remove scale parameter
 - Dong et al., 2003, n=1
 - Wu et al, 2003, n=6
 - One step estimation – No scale parameter removed
 - Blewitt et al., 2001, n=1
 - This work, n=1, n=6
 - Poor agreement for deg-1

- **Bottom plot**
 - Two step estimation – Both groups remove scale parameter first
 - Good agreement for deg-1
 - But degree-1 now more sensitive to truncation!
Estimated scale as part of Helmert transformation has significant ($\alpha=0.01$) annual signal: 3.2 ppb

Simultaneous estimation of scale + load coefficients eliminates annual scale signal!

…and load parameters are unaffected by simultaneous scale estimation!

Helmert parameters should be simultaneously estimated with load coefficients!
Deg-1: Center of mass & origin

- Degree-1 displacements appear differently in various frames.
Deg-1: Independent confirmation

- GPS degree-1 deformation estimated every week
- Used to predict baseline length variations on VLBI baselines *not used in the GPS analysis*
 - Plot shows Westford-Gilcreek baseline
 - Dots from GPS “model”
 - Lines from VLBI observations
 - Correlation significant $\alpha=0.0002$
Deg-2: Earth rotation consistency

- Angular Momentum of Surface Fluids
 - Motion & Mass: angular velocity & moment of inertia
- Use Earth rotation measurements to test the GPS-inferred mass load
 - Degree-2 coefficients related to Earth’s inertia tensor and hence to changes in Earth’s rotation
 - Changes in (2,0) mass load coefficient cause length-of-day to change
 - Changes in (2,1) mass load coefficients cause the Earth to wobble as it rotates (excites polar motion)
 - Compare Earth rotation changes predicted by GPS-derived mass load coefficients to observed changes after removing tidal and motion effects (winds and currents) from observed changes
Results: Degree-2 & Earth rotation

- Poor correlation with LOD excitation residual
 - Motion model error is believed to dominate
 - Mass load series exhibits less variability, is likely to be more accurate
- Significant correlation with polar motion excitation
 - Particularly so for the y-component which has a large seasonal cycle
 - Motion model error is believed to be very small
and SLR also gives
- geocenter
- and low-degree gravity field

GPS gives
- geocenter
- and surface geometry

Relationship between
- geometry (surface height)
- and gravity (geoid height)

\[
H_{nm}^\phi = \frac{h'_n}{1 + k'_n} N_{nm}^\phi
\]

- Hence invert for LLN ratio with no explicit knowledge of load
Constraints on Earth’s elasticity

- GPS degree-1/GPS geocenter:
 \[\frac{h'_1}{1 + k'_1} = -0.20 \pm 0.01 \]

- GPS degree-1/SLR geocenter:
 \[\frac{h'_1}{1 + k'_1} = -0.21 \pm 0.02 \]
 - Earth Model (PREM): -0.25

- At degree-2:
 \[\frac{h'_2}{1 + k'_2} = -0.81 \pm 0.15 \]
 - Earth Model (PREM): -1.4
Self-consistent mass redistribution
Non-steric global mean sea level

- **GPS weekly results**
 - 11.7 mm peak-to-peak max on 10 Sep

- Compare with seasonal models derived from:
 - hydrological models
 - TOPEX altimetry
 - with various assumptions

- Ocean heat budget?
Prospects: Physical assimilation

- Consider 3 Levels of Data Assimilation:
 - Station coordinate level
 - Kinematics level
 - Physical (dynamics) level

- Physical level has the potential
 - To enforce consistency in Earth system
 - To combine GPS, VLBI, SLR, GRACE, Jason, tide gauge data, surface gravity, Earth rotation,…
 - But it requires careful treatment of reference frames and consistency within and between models
 - Assimilation should clarify our thinking and should help to resolve problems in models and data
Conclusions: What can IGS do to improve Global GPS Science?

- IGS GNAAC analysis has demonstrated the physical connections between coordinates, loading, gravity, sea level, & Earth rotation.
- IGS can incrementally improve current products by improving:
 - station distribution: uniformity, density, and stability
 - station configuration: uniformity and stability
 - station data & metadata: accuracy and availability
 - duration of IGS network: 20+ years!

PROPOSAL: IGS should adopt a new product:
- spherical harmonic coefficients (weekly)
- simultaneously estimated Helmert parameters (to ITRF)
- This will create an important physical connection to other types of observations, and to other IAG Services & scientific communities

- It will be back to the “good old days” in global GPS geodesy!
 - by taking IGS to the next level - dynamics
Our recent publications on this...

- **Some PDFs at**: http://www.nbmg.unr.edu/staff/geoff.htm