JPL/USC GAIM: New Developments in Using COSMIC and Ground-Based GPS Data to Estimate High Precision Ionospheric Products Including VTEC

Attila Komjathy, Brian Wilson, Vardan Akopian, Xiaoqing Pi, Miguel Dumett, Anthony J. Mannucci and Chunming Wang

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Data assimilation techniques for space weather are finding increasing success in ionospheric remote sensing due to the growing abundance of data from ground and space-based sensors and new GPS ionosphere-enabled satellites. The COSMIC satellite constellation, launched in April 2006, now provides unprecedented global coverage from GPS occultation measurements (~1700 per day as of June 2007), each of which yields electron density information with up to ~1 km vertical resolution. Calibrated measurements of electron density (total electron content or TEC) from COSMIC suitable for input into assimilation models are currently made available in near real-time (NRT) with latencies between 30 and 120 minutes.

In this research, we discuss the impact of assimilating COSMIC occultation and ground-based TEC measurements into the JPL/USC Global Assimilative Ionospheric Model (GAIM). Electron density profiles from GAIM are compared to radar measurements obtained from the Baseline Scatter Radars (ISR) at Arecibo, Jicamarca and Millstone Hill.

Figures and Tables
- **GAIM Input Data Files:**
- **Kalman Assimilation Runs: Three Case Studies**
- **Summary and Conclusions:**
 - JPL now routinely generates calibrated TEC and Abel electron density retrievals using COSMIC data.
 - Ground-only, ground+COSMIC and climate GAIM runs performed.
 - GAIM profiles are validated using Arecibo, Jicamarca, Millstone Hill ISR, Jason VTEC and Abel profiles.
 - ISR validation results show that assimilating COSMIC data improves VTEC, NmF2 and Hmf2: i.e., resulting in improved profile shapes. Assimilating COSMIC data seem to improve TEC accuracy potentially leading to more accurate IGS ionospheric products.

Promise of Global Ionospheric Data Assimilation (GAIM) is near.