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Introduction
Accurate	estimation	of	GNSS	site	velocity	and	its	uncertainty	is	essential	for	many	geodetic	and	geophysical	
applications:

• Reference	frame	realization
• Plate	tectonic	deformation
• Glacial	isostatic	adjustment
• Crustal	loading	deformation

Data	breaks	commonly	exist	due	to	either	
natural	or	artificial	causes,	such	as	:
• Earthquake
• Environmental	changes
• Equipment	change
• Changes	in	processing	strategy,	
• Human	error	
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site position time series:145

yt = c + r · t +
KX

i=1
bi · pi + a1 · cos2⇡ f0t + a2 · sin2⇡ f0t + et, (2)

where yt is the site position coordinate observed at time t, and et is random observational146

noise, and f0=1 cpy (“cycle-per-year"). The parameters to be estimated include the con-147

stant term c, the linear rate r , the annual amplitudes a1 and a2, and the magnitudes of148

total K data breaks, which are denoted by bi (i = 1, · · · , K ). The Heaviside step function149

pi is defined as150

pi =

8>>>><>>>>:
0 if t < ti

1 if t � ti

, (3)

where ti is the occurrence epoch of the ith data break. This is a general model that is151

applicable to both horizontal and vertical components. we thus do not discriminate among152

di�erent position coordinate components.153

Given the covariance matrix of the observational noise (Cx), the least square esti-154
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and the posterior covariance matrix for the estimates is156

Cx̂ =
f
A

T
C
�1

x
A

g�1

, (5)

where157

y =
⇥
y1, ..., yn

⇤T , (6)

and158

A =

2666666666666664

1 t1 cos2⇡ f0t1 sin2⇡ f0t1 p1 · · · pK

1 t2 cos2⇡ f0t2 sin2⇡ f0t2 p1 · · · pK
...
...

1 tn cos2⇡ f0tn sin2⇡ f0tn p1 · · · pK

3777777777777775

. (7)

We assess the impact of data break on rate uncertainty by assuming di�erent mod-159

els for observational noise et , including: (1) flicker noise, (2) first-order-Gauss-Markov160

(FOGM) models with correlation length of 50-day, 120-day, 180-day and 360-day, respec-161

tively, (3) fractal white noise models with  = �0.6 and  = �0.8, respectively, (4) fractal162

–6–

Given	the	covariance	matrix	of	the	
observational	noise,	𝐂𝐞 ,	the	least	square	
estimate	for	the	unknown	vector	

is

𝐱$ = 𝐀𝐓𝐂𝐞(𝟏𝐀
(𝟏
𝐀𝐓𝐂𝐞(𝟏𝐲	,

and	the	posterior	covariance	matrix	for	the	
estimate	is	

𝐂𝐗. = 𝐀𝐓𝐂𝐞(𝟏𝐀
(𝟏

.
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Site	velocity	estimate	and	its	uncertainty
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where Heaviside	step	function	



[30] The USGS solution is about 50% worse than the
SOPAC or JPL (regional) solutions in both noise processes
and in all coordinate components. This may be accounted
for by the fact that the USGS solution is based on a rapid
analysis of the data before the more accurate IGS final orbits
are available since both SOPAC and USGS use the GAMIT/

GLOBK software, although with different processing strat-
egies. The significantly lower noise magnitudes for the
SOPAC PANGA analysis compared to the PANGA PANGA
analysis is most likely due to not resolving integer-cycle
phase ambiguities in the latter analysis after point position-
ing. In addition, the PANGA analysis group use sites
outside of the array and fewer sites to remove common
mode signals. The same factors may explain the larger noise
magnitudes in the REGAL REGAL solution. The SOPAC
SCIGN solutions show slightly lower flicker noise ampli-
tudes and slightly higher white noise amplitudes than the
SOPAC PANGA solutions. The lower flicker noise in the
SOPAC SCIGN solutions may be due to more variable
meteorological conditions in the Pacific Northwest com-
pared to southern California, while the higher white noise
amplitudes may be due to the longer SCIGN time series.
[31] The SOPAC BARGEN solution provides the lowest

noise amplitudes for both noise processes and all compo-
nents. There are several reasons for this. BARGEN is the
most homogeneous network tested in terms of monumenta-
tion (Wyatt-designed deep drill braced monuments, in rock)
and environment (desert conditions). It is noteworthy that
the white noise plus flicker noise model is still preferred
over the white noise plus random walk model, indicating
that monument noise is still not the limiting factor. On the
other hand, the BARGEN sites are generally younger than
the SCIGN sites, explaining the reason for the lower white
noise amplitudes in the SOPAC BARGEN solutions.
[32] Mao et al. [1999] found a latitude dependence for

white noise in the vertical component. With around an order
of magnitude more stations in this study we can investigate
latitude dependence in the global solutions. The white and
flicker noise amplitudes as a function of site latitude is
plotted in Figure 6 for the JPL and SOPAC global solutions.
Also plotted is an arbitrarily derived function to highlight
any midlatitude dependence and a hemisphere bias. The
function takes the form

s ¼
aþ be#cl2

l > 0

aþ d e#cl2 # 1
n o

þ b otherwise;

(

ð5Þ

where s is the noise amplitude, l is the site latitude, and
a, b, c, d are the estimated parameters. Using the standard
F test, we found that for the white noise magnitude in all
three components and for both solutions we could reject
the null hypothesis that the noise was equal at all latitudes.
In the case of the flicker noise we could only reject the
null hypothesis for the east component in both solutions.
However, the fit to the data does suggest that there is a
latitude dependence in the north and vertical components.
In all cases the fit to equation (5) showed a significant
positive bias for Southern Hemisphere sites i.e., sites in the
Southern Hemisphere are noisier than sites in the Northern
Hemisphere.
[33] It seems likely that as the number of sites available

for the global reference frame increases the noise in the
time series should decrease. To see whether this is indeed
the case, we took some of the longest sites and analyzed
2 years worth of data from the series, stepping every year;
that is, we analyzed 1991–1993, 1992–1994, 1993–1995,
etc. We used those sites with more than 3000 epochs in

Figure 5. Power spectrum in the north, east, and vertical
components of the common mode noise in the SOPAC
regional SCIGN solution. Solid line is the fitted spectra of
white noise and flicker noise based on the average
amplitudes from the SOPAC global solution. Dashed line
is the fitted spectra of white noise and flicker noise
estimated using the MLE algorithm on the common mode
time series. Note also the prominent peak at around a period
of 13.6 days. This is also seen in the JPL global time series.
An explanation of this is provided by Penna and Stewart
[2003].
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Power-law	noise:

𝑃0 𝑓 = 𝑃2(
𝑓
𝑓2
)5

where
P0 and	f0 :	normalization	constants	
𝜅	is spectral	index:
		𝜅 = 0:	White	noise
		𝜅=	-1:		Flicker	noise
		𝜅=	-2:		Random	walk
-3	<	𝜅 <	-1:	Fractal	random	walk
		𝜅 >	-1	:	Fractal	white	noise

instead of perhaps a single dominant signal in the global
solutions. These noise sources may be due to a combination
of differences in atmospheric effects from region to region
and local site effects such as type and variety of geodetic
monuments (discussed further below), as well as other local
conditions. For example, in southern California, Bawden et
al. [2001] and Watson et al. [2001] found widespread
groundwater and oil pumping that contaminated the tectonic
signal measured at certain GPS stations. An excellent
correlation can be found between sites whose time series
are expected to be contaminated (see also http://quake.
wr.usgs.gov/research/deformation/modeling/socal/la.html)
and those in this study with spectral indices lower than
around !1.5. For example, FVPK has spectral indices of
!2.7, !2.2, !0.9 for north, east, and vertical, respectively.
The uncharacteristically large spectral indices are due in this
case to unmodeled nontectonic deformation at these sites.

5.3. Spatial Correlation

[35] The reduction in time-correlated noise from global
solutions to regional solutions, which have had common
mode noise removed, suggests that some of the noise is
spatially correlated. We can examine this by examining the
correlation between time series of sites in a solution as a
function of the station separation (Figures 9 and 10). The
site-to-site correlations are calculated from the residuals,
thereby removing the influence that a trend and annually
repeating signal would have on the estimated value.
[36] Traditionally, the significance of any correlations is

tested with the implicit assumption that the two series are
white. In this case, if the two series are uncorrelated and the
number of common points is sufficiently large (N > 500 say),
then the estimated correlation coefficient is distributed
normally with a zero mean and a standard deviation of
N!1/2 [Press et al., 1992]. Other methods have been pro-
posed to account for non-Gaussian probability distributions;
however, these may still be inappropriate for time-correlated
noise. The danger of spurious correlations in economic time
series was discussed by Granger and Newbold [1977]. They
performed simulations on several time-correlated noise
models and showed that high correlations that would
be considered significant from the standard tests were
achieved from two uncorrelated series. We performed
similar simulations to investigate the significance of the
spatial correlations seen here. Pairs of time series with noise
similar to what we would expect for the global sites in the
horizontal (8.5 mm/yr1/4 flicker, 3.5 mm white) and vertical
(21 mm/yr1/4 flicker, 6 mm white) were simulated. Time
series of length 32, 64, 128, 256, 512, 1024, and 2048 were
used. In this case, a decrease in standard deviation of the
estimated correlation is seen with length, but it is slower than
the N!1/2 for white noise. Further, the standard deviation
tended to a steady value of just below 0.1 for large N. With
this in mind, we can be confident of the significance of the
correlations seen in Figures 9 and 10.
[37] In the two global solutions (Figure 9) a gradual

decrease in correlation is seen from about 0.8 at around
0.1! (10 km) to a correlation of 0.5 at around 10! (1000 km).
The correlation drops sharply to zero at around 40!. In the
JPL global solution the correlations between the PIN1 and
PIN2 sites, which are 50 m apart, are 0.79, 0.78, and 0.72
(753 common epochs) in north, east, and vertical compo-

Figure 8. Histograms of the estimated spectral index for
the north, east, and vertical components at sites in the
different GPS solutions. Values inside the parentheses
indicate the mean and standard deviation of the spectral
estimates.
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Noise	in	GPS	position	time	series	

Williams	et	al.	[2004]
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Figure 2. (a) The rate uncertainties estimated for di�erent error models when the number of evenly-space

data breaks increases from 0 to 21 within a decade-long daily error time series. (b) Similar to (a), except that

for each error model, the uncertainties are divided by the one in the “break-free" case, reflecting the number of

times (i.e. growth factor) the uncertainty is greater than the “break-free" uncertainty.

291
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294

squre-root (a + b
p

x) fits based on the simulated noise time series. Take the flicker noise306

for example. For a given number of breaks, we estimate the rate for each of the 400 simu-307

lated noise time series, and further calculate the RMS scatters of these 400 rate estimates.308

As shown in Figure 3, these RMS values closely follows the realistic rate uncertainties in-309

duced by flicker noise as the number of breaks increases. The linear fit results in a much310

smaller RMS of residuals (0.007 mm/yr) than that of the square-root fit (0.011 mm/yr).311

If the assumption of white noise is made for the rate estimation, larger rate RMSs are312

obtained for all the given number of breaks, and can be better fitted by the square-root313

model, particularly when the number of breaks is less than 5. Therefore, the unrealistic314

white noise assumption, which is adopted when Gri�ths and Ray [2016] estimate the rates315

from site position time series, would explain the contradiction.316

An can be seen in Figure 2a, for di�erent noise models, the rate uncertainty shows319

di�erent sensitivity to the addition of data breaks. For each given number of data breaks,320

we compute a “growth factor" for each error model, which is defined as the ratio of the321

current rate uncertainty to the one when the error time series is free of breaks. The growth322

factor thus can be used to measure the sensitivity of rate uncertainty to data breaks. The323

results are listed in Table A: 2. As shown in Figure 2b, the white noise and the random324

–12–

Sensitivity	of	rate	uncertainty	to	data	breaks	
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white	
noise

fn+wn	
[3:5]

frac	wn	
[0.6]							

frac	wn	
[0.8]

fn+wn	
[5:3]

flicker	III flicker	I flicker	II

Correlation	length	[days] 0.000 0.802 1.607 5.859 11.782 31.178 36.218 38.700

Sensitivity	[number	of	times	
per	additional	break] 0.996 0.143 0.260 0.147 0.095 0.086 0.074 0.065

fogm	[50	
days]

fogm	[120	
days]									

fogm	[180	
days]

frac	rw	
[1.4]

fogm	[360	
days]

frac	rw	
[1.6]

random	
walk

Correlation	length	[days] 46.824 103.429 146.483 236.774 247.292 345.320 546.412

Sensitivity	[number	of	times	
per	additional	break]

0.049 0.013 0.007 0.011 0.002 0.003 0.000

Table 1. The correlation lengths and rate uncertainty sensitivities estimated for di�erent noise models.

Here, the rate uncertainty sensitivity is calculated as the increase rate of the growth factor, reflecting the net

increase of rate uncertainty per additional data break when multiplied by the “break-free" uncertainty.

346

347

348

crease in rate uncertainty by 100% of the “break-free" value. However, the sensitivity de-377

creases dramatically even if very weak temporal correlation exists in the error model. For378

instance, although the mixed model, which is a mixture of flicker and white noise with379

amplitude ratio of 3:5, has very weak temporal correlation of 0.8 day, the corresponding380

rate uncertainty becomes considerably less sensitive to data breaks, only increases by 14%381

of the “break-free" uncertainty per additional data break.382

Figure 4. (a) Covariance functions numerically estimated by averaging 400 samples, which are derived

using decade-long daily time series of synthetic errors. The red dashed line represents the constant covariance

value of 1/e. (b) The relationship between the increase of growth factor per additional data break and the

correlation length. The red dashed line shows the fit to a two-phase exponential function.

383

384

385

386
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As can be seen from Figure 4b, when the correlation length is greater than 1 day,387

the sensitivity decays almost exponentially as the temporal correlation grows. The sensitiv-388

ity decays even faster as the correlation length increases from 0 to 1 day. We thus suggest389

an empirical double-exponential model to describe the dependence of sensitivity on error390

correlation:391

s(l) = a · eb ·l + c · ed ·l (15)

where s is the increase rate of growth factor with respect to the number of data breaks392

(i.e. sensitiviy); l is the correlation length of the error time series; a, b, c and d are the393

parameters estimated by fitting the model (15) to the samples shown in Figure 4b, and es-394

timated as 0.923, -3.061, 0.074 and -0.011, respectively. Thus, when the correlation length395

l is small, the change of s(l) is mainly dominated by the change of the second term in396

equation (15), which represents an exponential decay much faster than the first term. As397

l increases, the weight of the first term gradually surpasses. The double-exponential func-398

tion is used because, when the correlation length is less than about 1 day, the sensitivity399

decays substantially faster than it does for longer correlation length.400

4 Discussion401

Gri�ths and Ray [2016] assesses the impact of GNSS data breaks on station velocity402

uncertainty by synthesizing data breaks within the actual position time series of the IGb08403

reference stations. In their study, site rates, referred to baseline solution, are first obtained404

by analyzing a total of 1134 IGS time series with an average data span of 8.2 ± 6.1 yr405

and using the IGS o�cial set of data breaks (an average break number of 0.9 per site per406

decade). The estimation is then repeated after artificially doubling the number of breaks407

in each position time series during the last iteration, and compared with the baseline so-408

lution. The impact of the data break is assessed by checking the WRMS (weighted root-409

mean-square) di�erence of the rate estimates, compared to the baseline solution, as a func-410

tion of the number of data breaks. They also fit an analytical form of a + b
p

x (x is the411

number of breaks) to the WRMS changes for the rate estimates.412

Based on the fitted a + b
p

x function, they extrapolate the results for the ideal sit-413

uation if no data break were present in the IGS site time series, and conclude that the414

present level of data break in the IGS operational products, which is 0.9 breaks per site415

per decade, has great impact on all three components of the velocity estimates. Partic-416

ularly for the vertical component, compared with the ideal situation if no breaks existed417
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Therefore, we choose to numerically estimate the correlation length from the syn-343

thetic noise samples. For a given noise sample whose length is N , its auto-covariance344

function can be computed as345

c(m) =

8>>>>><>>>>>:

N�m�1P
n=0

 
en+m � 1

N

N�1P
i=0

ei
!
·
 
en � 1

N

N�1P
i=0

ei
!
, if m � 0

c(�m), if m < 0.
(14)

Here, the covariance function c(⌧) is estimated rather than the correlation function �(⌧)349

(as defined by Equation 10), in order to eliminate the e�ect of non-zero mean value on350

correlation length. If not removed, the non-zero mean value of a realized error time se-351

ries results in longer correlation length that reflect a common bias in the errors, instead352

of the extent to which the random errors fluctuate in tandem. For each of the noise types,353

the auto-covariance function is first numerically estimated by averaging the 400 sample354

auto-covariance functions obtained from the synthesized decade-long noise time series.355

As shown in Figure 4a, di�erent noise models show di�erent covariance decay rates with356

the increase of time lag, reflecting di�erent degrees of temporal correlation. Random walk357

and white noise show the strongest (infinite in theory) and weakest (zero in theory) tempo-358

ral correlations, respectively. As discussed previously, all the synthetic time series are nor-359

malized so that their RMS scatters equal to 1 mm, thus all the covariance functions have360

c(0) = 1 mm2. The red dashed line in Figure 4a represents the constant covariance of361

1/e. The time lag, where this constant covariance line and the covariance function curve362

intersects, is then defined as the correlation length in this study for measuring the degree363

of correlation among the noise fluctuations. Table 3 lists the estimated correlation lengths364

for all the noise models.365

As shown in Figure 2b, the growth factor of rate uncertainty is almost proportional366

to the number of data breaks for all the error models. Therefore, for each error model in367

Figure 2b, we fit the increase rate of the growth factor with respect to the number of data368

breaks, which reflects the average increase of growth factor per extra data break within a369

decade-long time series. The results are listed in Table 3. When multiplied by the "break-370

free" rate uncertainty, this number indicates the net increase in rate uncertainty induced by371

an extra data break. In Figure 4b, the estimated increase rate of growth factor is plotted372

against correlation length for the error models. It can be seen that the growth factor gen-373

erally increases slower when the temporal correlation of noise is stronger. The white noise374

exhibits the greatest sensitivity, the growth factor of rate uncertainty increases by 1 every375

time a new data break is added. In other words, every additional data break induces an in-376
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Conclusion

• The estimated site velocity becomes more uncertain as the number of data breaks increases.

• How fast the uncertainty increase depends on the degree of temporal correlation of the observational error.
The sensitivity of rate uncertainty to data breaks decrease rapidly as the degree of correlation increases.

• The simple white noise assumption overestimate the sensitivity of rate uncertainty to data breaks.

• For the mixture of flicker noise and white noise, which best describe the noise in most GPS position time
series, doubling the number of data breaks from 1 to 2 only inflates the rate uncertainty by 11%.

• The existence or potential future growth of data breaks is not a major factor undermining the stability of
reference frame realization, once the temporal correlation of the error is properly accounted for.

• The necessary equipment replacement, which is critical to improve GNSS data quality, should be done
without hesitation.


