RETICLE v2.0 – Recent Developments of DLR’s Real-Time Clock Estimation (RETICLE) Engine
André Hauschild, DLR/GSOC
Agenda

• Overview of RETICLE v2
• GNSS Clock Estimation Results
• Summary and Conclusion
• Recommendations
Brief History of RETICLE Development at GSOC

- Mid 2007: start of S/W development for v1.0
 - Single-threaded application, no parallelization, GPS only
 - Later addition of GIOVE and GLONASS

- Mid 2008: first operational real-time version

- End 2008: started participation in IGS Real-Time Pilot Project
 - One of the first real-time analysis centers to submit products

- Mid 2015: start of S/W development for v2.0
 - Multi-threading, designed for large network and multi-constellation
 - GPS, GLONASS, Galileo, BeiDou, QZSS
Overview of RETICLE

Inputs
- RT GNSS Data Stream (observations, broadcast ephemerides)
- GNSS Orbits (SP3) and EOPs* (frequently updated predictions)
- Station Meta-Data (SINEX) (Position, Antenna, Receiver, …)
- Satellite Meta-Data (SINEX, ANTEX) (Antenna type)

* Earth-Orientation Parameters

Outputs
- Real-Time GNSS Clock Offsets (every 5 sec)
- GNSS Broadcast Ephemerides (on change)
- Differential Code Biases (DCBs) (every 60 sec)
- Vertical Ionospheric Delay (every 60 sec)
Overview of RETICLE – Inputs

RT GNSS Data Stream (observations, broadcast eph.)

- RETICLE uses ~150 IGS RT network stations
 - Unification of stream to single access point
 - Conversion from raw (RTCM) to ASCII
- BKG’s BNC decoder for RTCMv3 decoding
 - Output of OBS and NAV feed streams

Internet

1 Hz RTCM Streams
(typical latency ~100ms ...~10sec)

Public IGS NTRIP Casters

Private DLR NTRIP Caster
Overview of RETICLE – Core Algorithm

- Core algorithm based on federated Kalman-filter
- “Local” Kalman-filters for each individual station
- “Global” Kalman-filter for fusion of “local”-filter estimates
 - Estimates clock offset and drift every 5 seconds, iono + DCBs every 60 seconds
- Capable of processing a large station network (tested with up to ~150 stations)
- Capable of processing all GNSS (G+R+E+C+J) (~85 SVs)
- Autonomous operation, minimize human interaction / maintenance
 - Automatic exclusion of unhealthy satellites
 - Handle changes in the real-time network (adding/removing stations)
 - Automated update of meta-data for stations and satellites
Overview of RETICLE – Core Algorithm

“Local” Filters (~100-150)
- Station Filter
- Un-combined processing @ 1Hz
- Iono, Clocks, Tropo, DCBs, Ambiguities
- G+R+E+C+J and all signals

“Global” Filters
- Clock Filter
- Iono Filter
- DCB Filter
Overview of RETICLE – Outputs

- Precise GNSS satellite clock offsets and clock drifts
 - Update rate 5 seconds, latency ~ 8 seconds
- GNSS Broadcast Ephemerides
 - File-based near real-time products updated every 5 minutes on FTP server
 - SP3 (sampling 10 min), Clock-RINEX (sampling 5sec), RINEX NAV
 - RTCMv3 SSR streams for real-time users streamed to NTRIP caster
 - Generated with BNC
Overview of RETICLE – Outputs

- Differential Code Biases (DCBs)
 - Stored in Bias-SINEX file updated every 60 seconds
- Vertical Ionospheric Delay
 - Stored in Iono-file updated every 60 seconds
- Not yet disseminated, but planned to
 - Stream DCBs in RTCMv3 SSR stream
 - Generate Real-Time GIM based on vertical delays
Overview of RETICLE – Results

• Orbit predictions
 • IGS ultra-rapid predictions for GPS and GLONASS
 • DLR ultra-rapid predictions for Galileo

• Clock accuracy assessment with SISRE (1)
 • Reference product DLR MGEX final orbit/clock

• Consistent clock reference signals
 • GPS C1C/C2W, GLO C1C/C2P, GAL C1X,C5X

• Typical SISRE rms
 • GPS: 7-8 cm
 • GAL: 9-11 cm
 • GLO: ~decimeters

• GLONASS clocks are biased (FDMA inter-channel biases), but stable

<table>
<thead>
<tr>
<th>Date</th>
<th>GPS</th>
<th>GLO</th>
<th>GAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-Oct-2018</td>
<td>7.26</td>
<td>41.92</td>
<td>10.77</td>
</tr>
<tr>
<td>20-Oct-2018</td>
<td>7.41</td>
<td>49.50</td>
<td>13.67</td>
</tr>
<tr>
<td>21-Oct-2018</td>
<td>7.66</td>
<td>57.60</td>
<td>11.58</td>
</tr>
<tr>
<td>22-Oct-2018</td>
<td>7.44</td>
<td>71.34</td>
<td>10.93</td>
</tr>
<tr>
<td>23-Oct-2018</td>
<td>8.03</td>
<td>85.17</td>
<td>9.90</td>
</tr>
<tr>
<td>24-Oct-2018</td>
<td>7.47</td>
<td>89.96</td>
<td>9.50</td>
</tr>
<tr>
<td>25-Oct-2018</td>
<td>8.40</td>
<td>95.94</td>
<td>7.88</td>
</tr>
</tbody>
</table>

Overview of RETICLE – Results

GPS SISRE Mean

Graph showing GPS SISRE mean with data points labeled.

GPS SISRE StdDev

Graph showing GPS SISRE standard deviation with data points labeled.
Overview of RETICLE – Results

GLONASS SISRE Mean

GLONASS SISRE StdDev

GLONASS SISRE rms: 85.17 cm
Overview of RETICLE – Results

Galileo SISRE Mean

Galileo SISRE StdDev
Summary and Conclusions

- New multi-GNSS version of RETICLE
 - Capable of processing GPS, GLONASS, Galileo, Beidou and QZSS
 - Un-combined observations, parallel processing
- Uses fixed predicted input orbits
 - GPS and GLONASS from IGV ultra-rapid product
 - Galileo from new DLR ultra-rapid product
 - Precise orbits for BeiDou and QZSS pending
- User access to products via
 - RTCMv3 SSR streams at DLR/GSOC caster
 - SP3, clock-RINEX and RINEV NAV files at DLR/GSOC FTP server
- Next steps: phase biases for PPP-AR and ionospheric corrections
RT-WG Needs and Recommendations (in order of urgency)

1. Need multi-GNSS ultra-rapid orbits
 - Is the IGV (GPS+GLONASS) already official or still “experimental”?
 - Include Galileo, BeiDou and QZSS in an official IGS ultra-rapid product

2. Need better quality control of GNSS broadcast ephemerides
 - Accumulated RINEX NAV files and SW/RCV generated RTCMv3 streams
 - Correct satellite health status is REALLY important!!

3. Need to get out of dead-end road with RTCM SSR messages
 - No progress in phase-bias and iono/tropo SSR message standard
 - Use a self-defined IGS format or other alternative for stream R/T corrections?

4. Need more multi-GNSS stations in North(1)-America, Russia and China
 - Mostly GPS-only stations of UNAVCO in USA