1. Solar radiation pressure modeling

The main non-gravitational orbit perturbation acting on GNSS satellites is the solar radiation pressure. Mismodeling of this force has the potential to explain orbit-related frequencies found in GPS-derived station coordinates, geocenter and Earth orientation parameters (e.g. Y-pole rate). In this work, we study the impact on geodetic parameters of two different models:

CODE empirical model (Beutler et al., 1994), commonly used by the IGS analysis centers and based on the following empirical parameters:
- D0: direct acceleration
- Y0: Y-bias acceleration
- B0, BC, BS: constant and once-per-rev acceleration terms in B-direction

Adjustable box-wing model (Rodriguez-Solano et al., 2012), based on the physical interaction between the satellite’s structure and solar radiation. The following parameters are estimated:
- SF: solar panel scaling factor
- SB: solar panel rotation lag angle
- Y0: Y-bias acceleration
- +XR: reflection coefficient of +X bus
- +ZR: reflection coefficient of +Z bus
- -ZR: reflection coefficient of -Z bus

Fig. 1: Relative geometry of Sun, Earth and satellite. Illustration of D3B (Sun-fixed) and XYZ (body-fixed) frames.

In this study, four multi-year (2004-2011) GPS/GLONASS solutions have been computed, using a processing scheme derived from CODE (Center for Orbit Determination in Europe). Two 1-day solutions using the CODE and the adjustable box-wing models were computed. Furthermore, as the parameters of the box-wing model should be constant over time, we study the impact of stacking orbit and radiation pressure parameters of contiguous 1-day solutions, producing 3-day solutions.

2. Stacking of box-wing parameters

1-day
- Solar panel orientation

3-day
- Solar panel orientation

Fig. 2: Daily estimates of the adjustable box-wing model parameters from 1-day (left) and 3-day (right) solutions. The parameters are shown as a function of β, and for all GPS-IIA and GLONASS-M satellites available from 2007 to 2008.

3. Impact on station coordinates

1-day
- Y-pole rate (1-day)

3-day
- Y-pole rate (1-day)

Fig. 3: Average power spectrum of GNSS daily position estimates (290 ground tracking stations) from 2004 to 2011. Comparison between CODE (blue) and box-wing (red) radiation pressure models and between 1-day (left) and 3-day (right) solutions.

4. Impact on geocenter

1-day
- CODE
 - Power spectrum of the geocenter Z-component from 2004 to 2011. Comparison between CODE (blue) and box-wing (red) radiation pressure models and between 1-day (left) and 3-day (right) solutions.

3-day
- CODE

Fig. 4: Power spectrum of the geocenter Z-component from 2004 to 2011. Comparison between CODE (blue) and box-wing (red) radiation pressure models and between 1-day (left) and 3-day (right) solutions.

5. Impact on Earth orientation parameters

X-pole rate (1-day)
- CODE

Y-pole rate (1-day)
- CODE

Fig. 5: Geocenter Z-component position for the adjustable box-wing model, comparison between 1-day and 3-day solutions. The β, angle to the GPS and GLONASS satellites is shown in gray.

Fig. 6: Power spectrum of X- and Y-pole rates (1-day solution) after taking difference to IERS 08 C04 time series from 2004 to 2010.

Fig. 7: Length of Day (LOD) difference to IERS 08 C04 time series at noon, after applying tidal corrections. Best fitting line is plotted in black.

ACKNOWLEDGMENTS

DFG project “LEO orbit modeling improvement and application for GNSS and DORIS LEO satellites”
DFG project “Geodätische und geodynamische Nutzung reprozessierter GPS-, GLONASS- und SLR-Daten”

REFERENCES