Global Near Real-Time, Multi-GNSS and Ultra-Fast Troposphere Estimation at Geodetic Observatory Pecný

J. Douša
(jan.dousa@pecny.cz)

Geodetic observatory Pecný of Research Institute of Geodesy, Topography and Cartography

IGS 2012 Workshop, July 23-27, 2012, Olzstyn, Poland
Outline

- Introduction
- Global hourly near – real-time ZTD estimates
- Assessment of multi-GNSS ZTD estimates
- Ultra-fast/real-time estimates of ZTD
- Summary
Ground-based GPS-meteorology

- 15 Institutions, 7 ACs, > 200 GPS sites

TOUGH (2003-2006): "Targeting Optimal Use of GPS Humidity Measurements in Meteorology"
- 15 Institutions, 12 ACs, > 400 GPS sites

E-GVAP I (2006 - 2009), E-GVAP II (2010-2012)
"The EUMETNET GPS Water Vapor Programme"
- 13 Institutions, 12 ACs, > 1600 GPS sites

COST Action (pre-proposal) – March 31, 2012
"Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate (GNSS4SWEC)"
- interested 37 institutions from 25 countries
- See poster by Jones at al.
Near real-time ZTD solutions by GOP

Processing requirements:
- hourly GNSS data and precise IGS ultra/rapid orbits

GOP processing features:
- Bernese GPS software v.5.0
- Process starts every hour at HH:20
- 4 hourly data batches and normal equations (NEQ)
- ZTD based on last 12 hours from NEQ combination
- Coordinates based on 28 days from NEQ combination

GOP ZTD characteristics:
- ZTD product (HH:00 – HH:59) - linear trend model
 (piece-wise linear function)
- ZTD product filtering:
 - min 4 hours in NRT ZTD solution
 - min 2 days in NRT CRD solution

ZTD solutions (E-GVAP):
- Regional/national (GPS)
- Regional/national (GNSS)
- Global (GPS)

Data collection
- GPS global 130 sites ≈ 7min
- GPS Europe 80 sites ≈ 4min
- GNSS Europe 100 sites ≈ 5min
GNSS regional network processed in GOP

Sites processed by GOP AC [GPS–meteo]
GOP NRT ZTD long-term comparison

Time-series of monthly ZTD comparisons [GOP-NRT GPS/GNSS regional - EUR-repro1]

Time-series of monthly ZTD comparisons [GOP-NRT GPS/GNSS regional - raobs/BADC]
GOP global hourly updated ZTD product
Getting official routine global ZTD solution

October 1, 2010 – started routine solution (testing status)
Evaluation 10 months with 80 global stations (IGS/EUREF repro1, radiosonde)
September 10, 2011 – switched to operational mode (UK MetOffice request)

Fig left - hourly files @ GOP DC → global solution started at HH:40
Fig right - a global network extension (80->170), but up to 20% no data
Global GOP ZTD – example time-series
ZTD time-series for European/global stations

Time-series of weekly ZTD comparisons [GOP NRT global - EUR-repro1]

Time-series of weekly ZTD comparisons [GOP NRT global - IGS-repro1]

GOP official / reconfigured with 170 sites

JPL → USNO
GOP near real-time ZTD products

GOP_GLOB x IGS/REP1 [ZTD Bias]
GOP near real-time ZTD products
Global NRT ZTD vs. radiosondes

<table>
<thead>
<tr>
<th>GPS station</th>
<th>Radiosonde number</th>
<th>Lat [deg]</th>
<th>Lon [deg]</th>
<th>H [m]</th>
<th>dHor [km]</th>
<th>dVer [m]</th>
<th># pairs GPS-RS</th>
<th># excl GPS-RS</th>
<th>bias [mm]</th>
<th>sdev [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRIL</td>
<td>23078</td>
<td>69.36</td>
<td>88.35</td>
<td>48</td>
<td>7</td>
<td>-16</td>
<td>270</td>
<td>16</td>
<td>0.4</td>
<td>5.2</td>
</tr>
<tr>
<td>YAKT</td>
<td>24959</td>
<td>62.03</td>
<td>129.68</td>
<td>104</td>
<td>4</td>
<td>0</td>
<td>375</td>
<td>21</td>
<td>0.2</td>
<td>7.1</td>
</tr>
<tr>
<td>PETS</td>
<td>32540</td>
<td>53.02</td>
<td>158.65</td>
<td>102</td>
<td>10</td>
<td>-18</td>
<td>401</td>
<td>13</td>
<td>-2.2</td>
<td>9.2</td>
</tr>
<tr>
<td>JOZ2</td>
<td>12374</td>
<td>52.09</td>
<td>21.03</td>
<td>153</td>
<td>34</td>
<td>+58</td>
<td>482</td>
<td>13</td>
<td>-10.9</td>
<td>7.6</td>
</tr>
<tr>
<td>TITZ</td>
<td>10410</td>
<td>51.03</td>
<td>6.43</td>
<td>156</td>
<td>72</td>
<td>+3</td>
<td>367</td>
<td>13</td>
<td>21.1</td>
<td>9.0</td>
</tr>
<tr>
<td>ULAB</td>
<td>44292</td>
<td>47.86</td>
<td>107.05</td>
<td>1576</td>
<td>21</td>
<td>+268</td>
<td>419</td>
<td>21</td>
<td>2.8</td>
<td>9.1</td>
</tr>
<tr>
<td>YSSK</td>
<td>32150</td>
<td>47.02</td>
<td>142.71</td>
<td>91</td>
<td>8</td>
<td>+67</td>
<td>356</td>
<td>19</td>
<td>-12.3</td>
<td>6.7</td>
</tr>
<tr>
<td>CAGL</td>
<td>16560</td>
<td>39.13</td>
<td>8.97</td>
<td>238</td>
<td>16</td>
<td>+234</td>
<td>513</td>
<td>26</td>
<td>6.2</td>
<td>11.1</td>
</tr>
<tr>
<td>TSK2</td>
<td>47646</td>
<td>36.10</td>
<td>140.08</td>
<td>70</td>
<td>7</td>
<td>+44</td>
<td>294</td>
<td>16</td>
<td>11.1</td>
<td>7.6</td>
</tr>
<tr>
<td>CCJM</td>
<td>47971</td>
<td>27.09</td>
<td>142.18</td>
<td>209</td>
<td>1</td>
<td>+205</td>
<td>319</td>
<td>14</td>
<td>-2.8</td>
<td>10.0</td>
</tr>
<tr>
<td>GUAM</td>
<td>91212</td>
<td>13.58</td>
<td>144.86</td>
<td>202</td>
<td>16</td>
<td>+126</td>
<td>329</td>
<td>7</td>
<td>-23.3</td>
<td>15.3</td>
</tr>
<tr>
<td>IISC</td>
<td>43295</td>
<td>13.02</td>
<td>77.57</td>
<td>844</td>
<td>5</td>
<td>-76</td>
<td>345</td>
<td>14</td>
<td>0.0</td>
<td>25.2</td>
</tr>
<tr>
<td>HRAO</td>
<td>68263</td>
<td>-25.89</td>
<td>27.68</td>
<td>1414</td>
<td>59</td>
<td>-108</td>
<td>239</td>
<td>7</td>
<td>24.0</td>
<td>14.4</td>
</tr>
<tr>
<td>PERT</td>
<td>94610</td>
<td>-31.80</td>
<td>115.88</td>
<td>13</td>
<td>15</td>
<td>-7</td>
<td>437</td>
<td>19</td>
<td>-13.5</td>
<td>7.2</td>
</tr>
<tr>
<td>AUCK</td>
<td>93112</td>
<td>-36.60</td>
<td>174.83</td>
<td>133</td>
<td>30</td>
<td>+102</td>
<td>371</td>
<td>15</td>
<td>7.8</td>
<td>11.6</td>
</tr>
</tbody>
</table>
GOP global hourly ZTD (2010-2012)

ZTD NRT global product w.r.t.:
- IGS post-processing ZTD product
- UK Met Office global NWP model

Clear quality latitude dependence to NWP model (usually NWP more dry and quality higher close to equator)
GOP multi-GNSS evaluation and new NRT ZTD product
ZTD - GPS, GLONASS, multi-GNSS (2009)

GNSS Zenith Total Delay [NRT: -6 hours]

GLONASS x GPS Zenith Total Delays [stations]

StdDev

Bias
Stand-alone GPS vs. GLONASS - offline
(all EPN multi-GNSS stations, I05 vs. I08 models)

- Processing of all EPN multi-GNSS stations over 2 months (around 1631)
- The GPS data contributes to ZTD product here about the factor of 2/3
- IGS08 PCO+PCV model shows better agreement of GPS with GLONASS
Operational NRT multi-GNSS GOP ZTD

- Multi-GNSS ZTD started after GPS week 1632 (IGS08 PCV+PCO models)
- Using the same strategy as GPS official contribution to E-GVAP, but more frequently exploit robustness of GOP NRT solution than stand-alone GPS
- Testing unofficial IGV (GPS+GLONASS) ultra-rapid orbits
- With exception of June/July (leap second), running continuously
- Compared with GPS (official) shows slightly better Sdev and Bias

Time-series of weekly ZTD comparisons [GOP-NRT GPS/GNSS - PP_EURREP1]

![Graph showing time-series of weekly ZTD comparisons]
GOP ultra-fast/real-time ZTD product development
G-Nut software library (in-house solution)

- C++, object-oriented, multi-threaded, multi-platform (linux, windows)
- G-Nut library developments (open-source) + applications
- Support filter and LSQ processing (using real-time stream and data-files)
- Support multi-GNSS (GPS, GLONASS, Galileo,..)
- Flexible core library and data/product containers for extension in future
- Sequence of targets:
 - Real-time, offline PPP in static & kinematic modes
 - Troposphere estimation in quasi real-time for severe weather monitoring
 - Precise satellite clock estimations (PPP support)
 - Products for PPP ambiguity resolution (in Europe), augmentation,....
 -

For more details see the poster by Václavovic, Douša and Györi (P07-09)
G-Nut software package

http://www.pecny.cz/ (GNSS, software) ... looks here for updates ...

Data, models, products self-contained classes and their containers

The main virtual base `gdata` class (dark grey background) represents any data, model or product classes either as self-contained data/product elements or their containers. This class provides a common mutex, `glog` pointer for common and multi-threaded logging and data type or group identification, which is later defined in each derived class.

Self-contained data/products elements (pink background) provides independent data such as e.g. all observation for a single station, satellite navigation message, RTCM position corrections, polynomials of precise ephemerides valid over a specific time, etc.

The containers (green background) are usually apply maps defined in a way to easily find the relevant self-contained element (pink background). In some classes (e.g. `gallnav`, `gallprec`) the cache is implemented to speed up the searching procedure, which is always done through an internal (find) function returning a pointer to specific data/product element.
Forward filter ZTD estimated with IGS precise orbits and clock during 44 days (April-May 2012), example for GOPE and AREQ sites, April-10, 2012
Simulated real-time ZTD (RTCM)

Forward filter ZTD estimation in simulated real-time with IGS01 corrections during 44 days (April-May 2012), example for GOPE and AREQ, April-10, 2012
Kinematic real-time solution (RTCM)

Forward filter for ZTD with estimating kinematic coordinates, IGS01 corrections during 44 days (April-May 2012), example for GOPE and ONSA, April-10, 2012
Statistic for ZTD based on two software

44-days statistics (April-May) from BNC2.6 and gNut-Geb w.r.t IGS/EUR repro1

ZTD comparison : gNut-GBE x BNC [RT] x EUR repro1

ZTD comparison : gNut-GBE x BNC [RT] x IGS repro1
CRD and ZTD dependence on RTCM age

Impact of 10-70s delays of RTCM corrections on troposphere and coordinates

Dependency of ZTD estimates on RTCM correction delay

Dependency of coordinate estimates on RTCM correction delay
Summary

- Routine ZTD processing routinely operated at GOP since 2001 - evaluated using EUREF, IGS reference products as well as radiosondes.

- First global hourly ZTD solution developed and evaluated over one year (2010-2011) and, on request, officially accepted in Sept 2011 in E-GVAP. The global product was evaluated with IGS, EUREF ZTD products, global NWP model (UK MetOffice) and radiosondes.

- Multi-GNSS hourly ZTD solution developed, GLONASS and GPS stand-alone products tested and after GPS week 1631 (with adoption of IGS08 models providing much better consistency btw GPS and GLONASS PCV+PCO) routinely provided based on IGU + IGV orbits.

- New core software library under development (G-Nut) and application for real-time or ultra-fast (sub-hourly) ZTD solutions based on IGS RTPP products and using PPP technique. First results were demonstrated.

- Most of the product monitoring can be found at http://www.pecny.cz
Thank for your attention!

Acknowledgements:

All EUREF/IGS data and product contributing agencies
ITRF2008 solution and ITRF2008 densification

Various parts of presented work has been supported by
the Czech Science Foundation (P209/12/2207),
and
the European Regional Development Fund (ERDF), project “NTIS - New Technologies for Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090