Marek Ziebart1 and Rolf Dach2

1University College London, England
2Astronomical Institute, University of Bern, Switzerland
Apologies........from Marek

- Sorry I can’t be there
- I hope the meeting is excellent (I bet it is)
- I hope you enjoyed the talks
- See you all next time
- Thanks to Rolf for taking care of business
- Thanks to Gary Johnston for hosting and leadership
Space vehicle force modelling – key recent work (selection)

Galileo space vehicle force modelling – key recent work

- Good progress incorporating physical features of satellite into *a priori* models
- DLR box-plate model reduces SLR offset from 11cm to below 1cm
SV Geometry, materials and phase centre information

• As ever – an ongoing challenge
• Both the importance and the utility of such data is ever more clear as standards are raised
• Thanks to Zuheir Altamimi for his work in the ICG on trying to acquire access to data for all systems
• Overall we are making progress – UCL recently signed non-disclosure agreements with two manufacturers to acquire data – it is possible!
ESA Galileo Force Modelling Contracts

- ESA has let two contracts on surface force modelling for Galileo IOV and FOC space vehicles
 - Group 1: Bern/Airbus
 - Group 2: UCL/GMV/ESOC (Positim)
- Very detailed information on SV materials, structure and attitude released to the groups
- Agreement brokered with ESA to make all resulting models available to IGS
- Model development, testing and release in 2016 - 2017
New PhD started at UCL on BeiDou orbit dynamics (in collaboration with Wuhan)

- Zhen Li
- Working on MEO, IGSO and GEO satellites
- Next generation Earth radiation forcing methods

If any other groups are carrying out PhDs related to orbit dynamics – please contact Marek/Rolf – happy to give support/access to resources
Discussion points

• Insights from REPRO2 analyses? What worked? What needs improving/development?

• Orbit dynamics at GEO/IGSO – may require new thinking – a more aggressive radiation environment (particulate, solar wind, alternative attitude behaviour)

• New area of development at UCL: Lorentz forcing – coupling of surface charge with magnetic field – early work seems significant – anyone interested in testing ideas?

• Next generation Galileo force models will become available late 2016 – worth testing? Who is interested?

• What about the “traditional” systems, GPS and GLONASS (Block III, GLONASS-K)?
Orbit modelling: discussion
SLR–Residuals in mm

Orbit validation from recent repro using extended ECOM: GLONASS

Sorry for the quality.
SLR–Residuals in mm

Orbit validation from recent repro using extended ECOM: GLONASS–M
SLR–Residuals in mm

Orbit validation from recent repro using extended ECOM: GLONASS–M

Sorry for the quality.
SLR residuals during the year 2014 for two different GLONASS satellites in the slot R21.

SLR validation
Miracle about GLONASS satellites

<table>
<thead>
<tr>
<th>PRN</th>
<th>DUA*</th>
<th>DUA-</th>
<th>UNP</th>
<th>ELV</th>
<th>GAR</th>
<th>DUA*</th>
<th>O-C</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>10</td>
<td>0</td>
<td>70</td>
<td>134</td>
<td>562</td>
<td>607</td>
<td>4</td>
</tr>
<tr>
<td>105</td>
<td>9</td>
<td>0</td>
<td>87</td>
<td>68</td>
<td>694</td>
<td>441</td>
<td>1</td>
</tr>
<tr>
<td>121</td>
<td>8</td>
<td>0</td>
<td>92</td>
<td>182</td>
<td>1659</td>
<td>516</td>
<td>1</td>
</tr>
<tr>
<td>103</td>
<td>9</td>
<td>0</td>
<td>93</td>
<td>192</td>
<td>570</td>
<td>472</td>
<td>1</td>
</tr>
<tr>
<td>117</td>
<td>6</td>
<td>0</td>
<td>101</td>
<td>113</td>
<td>920</td>
<td>294</td>
<td>3</td>
</tr>
<tr>
<td>102</td>
<td>7</td>
<td>0</td>
<td>107</td>
<td>208</td>
<td>496</td>
<td>495</td>
<td>0</td>
</tr>
<tr>
<td>107</td>
<td>9</td>
<td>0</td>
<td>108</td>
<td>193</td>
<td>1018</td>
<td>483</td>
<td>0</td>
</tr>
<tr>
<td>112</td>
<td>22</td>
<td>0</td>
<td>112</td>
<td>23</td>
<td>1079</td>
<td>708</td>
<td>6</td>
</tr>
<tr>
<td>116</td>
<td>13</td>
<td>0</td>
<td>117</td>
<td>151</td>
<td>524</td>
<td>579</td>
<td>0</td>
</tr>
<tr>
<td>113</td>
<td>11</td>
<td>0</td>
<td>120</td>
<td>63</td>
<td>606</td>
<td>509</td>
<td>0</td>
</tr>
<tr>
<td>108</td>
<td>9</td>
<td>0</td>
<td>121</td>
<td>228</td>
<td>730</td>
<td>451</td>
<td>1</td>
</tr>
<tr>
<td>118</td>
<td>7</td>
<td>0</td>
<td>124</td>
<td>213</td>
<td>498</td>
<td>480</td>
<td>0</td>
</tr>
<tr>
<td>106</td>
<td>11</td>
<td>0</td>
<td>134</td>
<td>163</td>
<td>482</td>
<td>497</td>
<td>1</td>
</tr>
<tr>
<td>104</td>
<td>11</td>
<td>0</td>
<td>142</td>
<td>146</td>
<td>557</td>
<td>483</td>
<td>2</td>
</tr>
<tr>
<td>119</td>
<td>10</td>
<td>0</td>
<td>158</td>
<td>229</td>
<td>668</td>
<td>520</td>
<td>0</td>
</tr>
<tr>
<td>122</td>
<td>15</td>
<td>0</td>
<td>190</td>
<td>188</td>
<td>964</td>
<td>575</td>
<td>6</td>
</tr>
<tr>
<td>115</td>
<td>10</td>
<td>0</td>
<td>207</td>
<td>127</td>
<td>803</td>
<td>512</td>
<td>1</td>
</tr>
<tr>
<td>114</td>
<td>15</td>
<td>0</td>
<td>288</td>
<td>70</td>
<td>749</td>
<td>588</td>
<td>578</td>
</tr>
<tr>
<td>101</td>
<td>10</td>
<td>0</td>
<td>404</td>
<td>136</td>
<td>2033</td>
<td>500</td>
<td>4</td>
</tr>
<tr>
<td>111</td>
<td>11</td>
<td>0</td>
<td>434</td>
<td>108</td>
<td>1682</td>
<td>604</td>
<td>9</td>
</tr>
<tr>
<td>110</td>
<td>16</td>
<td>0</td>
<td>576</td>
<td>102</td>
<td>888</td>
<td>440</td>
<td>2</td>
</tr>
<tr>
<td>123</td>
<td>21</td>
<td>0</td>
<td>600</td>
<td>82</td>
<td>1166</td>
<td>584</td>
<td>9</td>
</tr>
<tr>
<td>109</td>
<td>40</td>
<td>1</td>
<td>1352</td>
<td>14</td>
<td>2674</td>
<td>573</td>
<td>9</td>
</tr>
<tr>
<td>124</td>
<td>31</td>
<td>1</td>
<td>1742</td>
<td>5</td>
<td>1704</td>
<td>586</td>
<td>592</td>
</tr>
</tbody>
</table>

- many single frequency data
- dead satellites do spin very quick
- Does any other ACs have also problems with these satellites?