Error analysis of the IGS repro2 station position time series

Paul Rebischung, Zuheir Altamimi, Jim Ray, Bruno Garayt
Outline

• **Daily repro2 SINEX combinations**
 – Main results
 – Spectral analysis of AC station position residuals

• **AC-specific long-term stackings**
 – **Purpose:** study "absolute" AC station position time series
 – **Background noise**
 – **Spurious periodic signals**
Daily repro2 SINEX combinations

AC contributions to the repro2 campaign

<table>
<thead>
<tr>
<th>Year</th>
<th>Center/Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>Center for Orbit Determination in Europe, Bern, Switzerland</td>
</tr>
<tr>
<td>1999</td>
<td>Natural Resources Canada, Ottawa, Ontario, Canada</td>
</tr>
<tr>
<td>2000</td>
<td>European Space Operations Center, Darmstadt, Germany</td>
</tr>
<tr>
<td>2004</td>
<td>GeoForschungZentrum, Potsdam, Germany</td>
</tr>
<tr>
<td>2008</td>
<td>Groupe de Recherche en Geodesie Spatiale, Toulouse, France</td>
</tr>
<tr>
<td>2012</td>
<td>Jet Propulsion Laboratory, Pasadena, California, U.S.A.</td>
</tr>
<tr>
<td>2015</td>
<td>Massachusetts Institute of Technology, Cambridge, Mass., U.S.A.</td>
</tr>
<tr>
<td>2019</td>
<td>Université de la Rochelle, La Rochelle, France</td>
</tr>
</tbody>
</table>

Smoothed, unbiased daily WRMS of the « AC – combined » station position residuals

Overall levels of inter-AC agreement

<table>
<thead>
<tr>
<th>STATION POSITIONS</th>
<th>EOPs</th>
<th>APPARENT GEOCENTER</th>
<th>SCALE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal ≈ 1.5 mm</td>
<td>Vertical ≈ 4 mm</td>
<td>x_p, y_p</td>
<td>x_{p}, y_{p}</td>
</tr>
<tr>
<td>25-40 µas</td>
<td>140-200 µas/d</td>
<td>8-20 µs/d</td>
<td></td>
</tr>
</tbody>
</table>

Long-term trends

- X/Y: ± 3 mm ± 0.3 mm/yr
- Z: ± 1 mm ± 0.1 mm/yr

Non-linear

- X/Y: ≈ 4 mm
- Z: ≈ 8 mm
- SCALE: < 1 mm
Combined IGS repro2 dataset

- **7714 daily SINEX files**
 - Daily station positions, geocenter coordinates and EOPs
 - January 2, 1994 → February 14, 2015
 - 1848 stations

Stations included in the daily repro2 combined solutions. The size and color of each dot is function of the number of days n each station is present.

Histograms of the lengths (top) and numbers of data points (bottom) of the repro2 station position time series.
Geocenter & terrestrial scale

Results from linear trends + annual fits to:

a) the daily repro2 combined geocenter coordinate time series
b) geocenter coordinate time series derived from the SLR contribution to ITRF2014
c) time series of scale offsets estimated between the daily repro2 combined solutions and IGb08

<table>
<thead>
<tr>
<th>Offset at 2005. [mm]</th>
<th>Rate [mm/yr]</th>
<th>Annual amp [mm]</th>
<th>Annual phi [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_{CM}</td>
<td>1.6</td>
<td>0.28</td>
<td>1.5 / 2.6</td>
</tr>
<tr>
<td>Y_{CM}</td>
<td>2.6</td>
<td>-0.40</td>
<td>3.6 / 2.8</td>
</tr>
<tr>
<td>Z_{CM}</td>
<td>7.0</td>
<td>-0.18</td>
<td>3.8 / 5.9</td>
</tr>
<tr>
<td>scale</td>
<td>-1.5</td>
<td>-0.03</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Scale factors estimated between the daily repro2 combined solutions and IGb08— Trend + annual + semi-annual fit

*Detrended daily repro2 combined geocenter coordinates
 - Detrended & smoothed repro2 geocenter coordinates
 - Detrended & smoothed geocenter coordinates derived from the SLR contribution to ITRF2014
Spectra of AC station position residuals

Averaged normalized Lomb-Scargle periodograms of the AC station position residual time series from the daily repro2 combinations
- results from white + flicker noise (i.e., a + b/f) fits
- crossover frequencies between white & flicker noises
Spectra of AC station position residuals

Higher level of white noise in ULR’s horizontal residuals (sub-optimal combination of station clusters)

Departure of JPL’s residuals from the white + flicker noise model, particularly in Up (unknown reason)
Spectra of AC station position residuals

- 3.65 day peaks in GRG's residuals (date rounding issue?)
- 7.0 day line in MIT’s North residuals (orbit constraints?)
- 7.8 & 8.2 day lines in COD’s & ESA’s residuals (GLONASS)
- 11.8 day line in GTZ’s North residuals (?)
- 13.2 day lines in GRG’s horizontal residuals (?)
Spectra of AC station position residuals

Harmonics of the GPS draconitic year (1.04 cpy)

Fortnightly tidal lines
- 13.6 days (M_t tide)
- 14.2 days (O_1 alias through 24h sampling)
- 14.8 days (M_2 alias through 24h sampling)
AC-specific long-term stackings

• **Purpose:**
 – Study "absolute" AC station position time series (rather than the differences to their mean)
 – Contribute to trace sources of spurious periodic signals (especially GPS draconitic harmonics & fortnightly lines)

• **Strategy:**
 – Pre-process daily AC solutions as for the daily SINEX combinations
 –Reject stations with time series < 500 days or large non-linear motions
 – Correct post-seismic deformations using ITRF2014 models
 – Use ITRF2014 discontinuity list (with marginal AC-specific adjustments)
 – Jointly estimate long-term positions & velocities + annual & semi-annual signals
 – Iterate until < 0.01% of observations have normalized residuals > 5
Stacking residuals: temporal domain

- COD: higher noise level before 1999, especially in East (ambiguity resolution?)
- GRG: higher noise level before 2000 (phase ambiguities not fixed)
- GRG: substantially higher WRMS in Up (≈ 7 mm after 2004) (?)
- ULR: higher noise level in horizontal (sub-optimal combination of station clusters)

Daily WRMS of the stacking residuals / Number of stations in the cleaned daily AC solutions
Stacking residuals: spectral domain

Averaged Lomb-Scargle periodograms of the station position residual time series from the AC-specific stackings (with annual & semi-annual signals restored)

- results from white + power-law noise (i.e., $a + b/f^\alpha$) fits
- crossover frequencies between white & power-law noises
Stacking residuals: background noise

Parameters of the white + power-law noise models represented in the previous slide:

- σ_{WN} = white noise amplitude
- α = spectral index
- σ (1 cpy) = total noise amplitude at 1 cpy

<table>
<thead>
<tr>
<th></th>
<th>EAST</th>
<th></th>
<th>NORTH</th>
<th></th>
<th>UP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>σ_{WN} [mm]</td>
<td>α</td>
<td>σ (1 cpy) [mm]</td>
<td>σ_{WN} [mm]</td>
<td>α</td>
<td>σ (1 cpy) [mm]</td>
</tr>
<tr>
<td>COD</td>
<td>2.9</td>
<td>1.02</td>
<td>13</td>
<td>2.4</td>
<td>0.99</td>
<td>13</td>
</tr>
<tr>
<td>EMR</td>
<td>2.9</td>
<td>1.12</td>
<td>16</td>
<td>2.4</td>
<td>1.12</td>
<td>16</td>
</tr>
<tr>
<td>ESA</td>
<td>2.6</td>
<td>1.03</td>
<td>13</td>
<td>2.2</td>
<td>1.05</td>
<td>13</td>
</tr>
<tr>
<td>GFZ</td>
<td>2.2</td>
<td>0.91</td>
<td>11</td>
<td>1.8</td>
<td>0.94</td>
<td>11</td>
</tr>
<tr>
<td>GRG</td>
<td>5.0</td>
<td>1.27</td>
<td>18</td>
<td>3.4</td>
<td>1.19</td>
<td>15</td>
</tr>
<tr>
<td>JPL</td>
<td>2.2</td>
<td>0.74</td>
<td>10</td>
<td>1.9</td>
<td>0.72</td>
<td>10</td>
</tr>
<tr>
<td>MIT</td>
<td>2.4</td>
<td>1.03</td>
<td>12</td>
<td>2.0</td>
<td>1.02</td>
<td>12</td>
</tr>
<tr>
<td>GTZ</td>
<td>1.9</td>
<td>0.92</td>
<td>10</td>
<td>1.7</td>
<td>0.88</td>
<td>10</td>
</tr>
<tr>
<td>ULR</td>
<td>3.1</td>
<td>0.93</td>
<td>11</td>
<td>2.7</td>
<td>0.90</td>
<td>11</td>
</tr>
</tbody>
</table>

- **GRG:** higher level of white noise
- **JPL:** lower spectral indices; hardly trace of white noise flattening (especially in Up)
- **All:** more colored noise in horizontal than in vertical
Stacking residuals: fortnightly band

14.76 days (M_2 alias):
- Spectral peaks visible in the horizontal residuals of all ACs
- Consistent with a rotational origin (e.g. error in the IERS subdaily EOP tide model)
- Seem more pronounced for GFZ/GTZ and MIT/ULR
- Spectral peaks visible in the vertical residuals of MIT/ULR

Square-root of the averaged Lomb-Scargle periodograms shown in slide 12: zoom on the fortnightly band
Stacking residuals: fortnightly band

14.19 days (O₁ alias):
- Small spectral peaks discernable in the horizontal residuals of some ACs
- Consistent with a rotational origin (e.g. error in the IERS subdaily EOP tide model)
- Clearer for MIT/ULR
- Spectral peaks visible in the vertical residuals of MIT/ULR
Stacking residuals: fortnightly band

13.66 days (M_f tide) / 13.63 days (75,565 tide):
- Both lines visible in (almost) all 3 components of all ACs
- 13.63 day lines generally larger, although they correspond to a minor tide!?
- Much lower peaks for JPL: low-frequency error absorbed by JPL’s stochastic orbit parameters?
- Vertical peaks larger for MIT/ULR
Spatial distribution of periodic signals

- 2.0 mm • 4.0 mm • 10.0 mm

Annual – Height

COD

EMR

ESA

GFZ

GRG

JPL

MIT

GTZ

ULR
Spatial distribution of periodic signals

2nd draconitic harmonic – East

- 0.4 mm
- 0.8 mm
- 2.0 mm

COD

EMR

ESA

GFZ

GRG

JPL

MIT

GTZ

ULR

World Map

-180 ° -90 ° 0 ° 90 ° 180 °
Spatial distribution of periodic signals

14.77 days – North

- 0.1 mm
- 0.2 mm
- 0.5 mm

COD
EMR
ESA
GFZ
GRG
JPL
MIT
GTZ
ULR
Spatial distribution of periodic signals

13.63 days – Height

- 0.2 mm
- 0.4 mm
- 1.0 mm

COD

EMR

ESA

GFZ

GRG

JPL

MIT

GTZ

ULR
Spatial distribution: summary

• **Annual / semi-annual:**
 – Visually good inter-AC consistency

• **Draconitics:**
 – Strong spatial correlations for low harmonics
 → Main orbit-related source
 – Maps generally similar amongst ACs up to the 4\(^{th}\) harmonic
 → Possibly common modeling errors

• **Fortnightly band:**
 – 14.76 & 14.19 days (aliases): large-scale correlations in horizontal signals, with some phase shifts between ACs
 – 13.63 days (direct): large-scale correlations, phase shifts between ACs, strong latitude-dependence for MIT/ULR and GRG’s vertical signals
Next steps

• Analyze repro2 orbit and ERP discontinuities
 – To better constrain the sources of draconitic and fortnightly signals

• Analyze short baselines
 – To help separating/quantifying local and global errors

• Revisit consistency of repro2 time series with loading models
Thank you for your attention!