Real-time Demonstration and Benchmark campaigns for developing advanced troposphere products

J. Douša (1), P. Václavovic (1), E. Pottiaux (2), F. Hinterberger (3), R. Pacione (4), W. Ding (5), N. Teferle (5), M. Kačmařík (6), K. Eben (7), G. Dick (8), F. Zus (8), H. Brenot (9)

JAN.DOUSA@PECNY.CZ

(1) Geodetic Observatory Pecny, RIGTC, Ondrejov, The Czech Republic
(2) Royal Observatory of Belgium, Brussels, Belgium
(3) Vienna University of Technology, Austria
(4) E-GEOS, s.p.a. & ASI, Matera, Italy
(5) University of Luxembourg, Luxembourg
(6) Technical University of Ostrava, The Czech Republic
(7) Institute of Computer Science of the Czech Academy of Sciences, Prague, The Czech Republic
(8) Helmholtz Centre Potsdam - GFZ German Research Centre for Geosciences, Potsdam, Germany
(9) Royal Belgian Institute for Space Aeronomy, Brussels, Belgium

IGS 2016, Sydney, 8.2 – 12.2
• Introduction

• Benchmark campaign
 • Design & data collection
 • Assessment of GNSS reference products and NWM-derived products
 • High-resolution gradient estimates, comparisons and animations
 • Study of impact of hydrometeors

• Real-Time Demonstration campaign
 • Design, contributions, monitoring
 • Assessment of RT products and smoothing strategy using the Benchmark campaign
 • Monitoring of real-time NWM corrections, dependence on forecast

• Summary
GNSS4SWEC Working Groups

COST Action ES1206: GNSS for Severe Weather and Climate (GNSS4SWEC)

→ 72 members
→ 26 EU+ countries
→ 4 non-EU partners
→ 10 specific activities

WG1

Advanced GNSS processing techniques (AGNSS)

Chair: **Dr Jan Dousa**, GOP (jan.dousa@pecny.cz)
Co-chair: **Dr Galina Dick**, GFZ (galina.dick@gfz-potsdam.de)

WG2

GNSS for severe weather monitoring (GNSS4SW)

Chair: **Dr Siebren de Haan**, KNMI (siebren.de.haan@knmi.nl)
Co-chair: **Dr Eric Pottiaux**, ROB (eric.pottiaux@oma.be)

WG3

GNSS for climate monitoring (GNSS4C)

Chair: **Dr Olivier Bock**, IGN (olivier.bock@ign.fr)
Co-chair: **Dr Rosa Pacione**, ASI (rosa.pacione@e-geos.it)
• Coordinating the development of advanced troposphere products in support of weather forecasting: ultra-fast production, asymmetry monitoring, tomography reconstruction, high-resolution products, multi-constellation processing

• Exploiting numerical weather model data in precise GNSS positioning and navigation
 generating synthetic troposphere parameters or observations
 evaluating NWM-derived troposphere corrections for real-time applications
 assessing troposphere mapping functions, impact of using mapping factors
 separating hydrostatic and non-hydrostatic parts in final and (near) real-time solutions

• GNSS data reprocessing to provide consistent troposphere products for climate research in Europe

• Stimulating transfer of knowledge, tools and data exchange in support of new analysis centres and networks setup

→ 10 sub-WG setup with focus on specific topics
Preparation phase: design & data collection

May-June 2013 - floods of Danube/Moldau/Elbe rivers

GNSS: ~500 stations (AT, CZ, DE, PL)
SYNOP: ~200 stations (AT, CZ, DE, PL)
NWM: regional (Aladin-CZ), global (ERA-Interim, NCEP GFS)
RAOBS: E-GVAP + two high-resolution (CZ)
WVR: Potsdam, Lindenberg (DE)
RADAR images: Brdy, Skalka (CZ)

Reference products

GNSS: Bernese (GOP), EPOS (GFZ)
NWM: G-Nut/Shu (GOP), DNS (GFZ)

User phase

contributions, evaluations
feedbacks, interpretations

GNSS reference products

Bernese + DD (GOP) – ZTDs (1h), GRD(6h)
EPOS-8 + PPP (GFZ) – ZTDs (15min), GRD(1h)

NWM-derived parameters

G-Nut/Shu (GOP): ZWD + ZHD + T/Tm + vert. corrections
DNS (GFZ): ZWD + ZHD + GRAD + MF

<table>
<thead>
<tr>
<th>NWM source (software)</th>
<th>Grid Resolution</th>
<th>Analysis [hour]</th>
<th>Forecast [hour]</th>
<th>GNSS source (software)</th>
<th>Pairs #</th>
<th>Excl #</th>
<th>Bias [mm]</th>
<th>Sdev [mm]</th>
<th>RMS [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-Interim (Shu)</td>
<td>1 deg</td>
<td>6</td>
<td>0</td>
<td>GOP (Bernese)</td>
<td>224</td>
<td>2</td>
<td>+0.0</td>
<td>9.6</td>
<td>10.0</td>
</tr>
<tr>
<td>ERA-Interim (Shu)</td>
<td>1 deg</td>
<td>6</td>
<td>0</td>
<td>GFZ (EPOS-8)</td>
<td>224</td>
<td>3</td>
<td>+0.3</td>
<td>9.7</td>
<td>10.0</td>
</tr>
<tr>
<td>ERA-Interim (DNS)</td>
<td>1 deg</td>
<td>6</td>
<td>0</td>
<td>GOP (Bernese)</td>
<td>224</td>
<td>3</td>
<td>-0.4</td>
<td>9.4</td>
<td>9.8</td>
</tr>
<tr>
<td>ERA-Interim (DNS)</td>
<td>1 deg</td>
<td>6</td>
<td>0</td>
<td>GFZ (EPOS-8)</td>
<td>224</td>
<td>3</td>
<td>-0.1</td>
<td>9.6</td>
<td>9.8</td>
</tr>
<tr>
<td>GFS (DNS)</td>
<td>1 deg</td>
<td>6</td>
<td>0.3</td>
<td>GOP (Bernese)</td>
<td>224</td>
<td>7</td>
<td>-4.9</td>
<td>11.0</td>
<td>12.0</td>
</tr>
<tr>
<td>GFS (DNS)</td>
<td>1 deg</td>
<td>6</td>
<td>0.3</td>
<td>GFZ (EPOS-8)</td>
<td>223</td>
<td>7</td>
<td>-4.5</td>
<td>10.9</td>
<td>11.8</td>
</tr>
<tr>
<td>ALADIN (Shu)</td>
<td>4.7 km</td>
<td>6</td>
<td>0,1,2,3,4,5</td>
<td>GOP (Bernese)</td>
<td>1343</td>
<td>20</td>
<td>+0.8</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>ALADIN (Shu)</td>
<td>4.7 km</td>
<td>6</td>
<td>0,1,2,3,4,5</td>
<td>GFZ (EPOS-8)</td>
<td>1343</td>
<td>22</td>
<td>+0.6</td>
<td>7.3</td>
<td>7.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NWM Source (software)</th>
<th>GNSS Source (software)</th>
<th>Pairs #</th>
<th>Bias [mm]</th>
<th>Sdev [mm]</th>
<th>RMS [mm]</th>
<th>North gradient</th>
<th>East gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERA-Interim (DNS)</td>
<td>GOP (Bernese)</td>
<td>224</td>
<td>-0.02</td>
<td>0.41</td>
<td>0.42</td>
<td>-0.04</td>
<td>0.43</td>
</tr>
<tr>
<td>ERA-Interim (DNS)</td>
<td>GFZ (EPOS)</td>
<td>224</td>
<td>+0.14</td>
<td>0.51</td>
<td>0.53</td>
<td>-0.08</td>
<td>0.49</td>
</tr>
<tr>
<td>GFS (DNS)</td>
<td>GOP (Bernese)</td>
<td>224</td>
<td>-0.04</td>
<td>0.44</td>
<td>0.45</td>
<td>-0.05</td>
<td>0.46</td>
</tr>
<tr>
<td>GFS (DNS)</td>
<td>GFZ (EPOS)</td>
<td>224</td>
<td>+0.13</td>
<td>0.54</td>
<td>0.56</td>
<td>-0.09</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Benchmark - NWM assessment

May 1 – June 30, 2013 - GNSS4SWEC Benchmark

Aladin-CZ – GNSS (GOP)

ERA-Interim – GNSS (GOP)

GFS – GNSS (GOP)
24-hour Evolution of Troposphere Gradients
Advanced tropo-products: horizontal tropospheric gradients & slant delays

- Development of NRT/RT high-resolution gradients
- Development of NRT/RT slant delay retrievals including definition for new Tro-SINEX format standards
- Derivation of 1st and 2nd order troposphere gradients from NWM
- Inter-comparison of gradients and slant delays from GNSS, NWM and WVR

Figure: May 31, 2013 (Benchmark) – estimates of tropospheric gradients from GNSS & NWM
Hydrometeors (Solheim et al., 1999):
→ liquid water, ice, snow, graupel

\[
ZTD = ZHD + ZWD + ZHMD
\]

\[
ZHD = 10^{-6} \int_{0}^{\infty} N_h \, dz = 10^{-6} k_1 R_d \int_{0}^{\infty} \rho_m \, dz
\]

\[
ZWD = 10^{-6} \int_{0}^{\infty} N_v \, dz = 10^{-6} \int_{0}^{\infty} \left(k_2' \frac{e}{T} + k_3 \frac{e}{T^2} \right) \, dz
\]

\[
ZHMD = 10^{-6} \int_{0}^{\infty} \left(N_{lw} + N_{ice} \right) \, dz = \int_{0}^{\infty} \left(1.45 M_{lw} + 0.69 M_{ice} \right) \, dz
\]
Real-Time products - Demonstration Campaign

- Developing, testing and assessing new software and strategies
- Use of IGS Real-Time Service global products for PPP (GNSS satellite orbits & clocks)

RT Demo campaign

Scope: Europe (15) + Globe (17)

Start: April 1, 2015

Status: 2 Feb, 2016

Software: 6+1 types

Contributions: 6+1 ACs

<table>
<thead>
<tr>
<th>AC</th>
<th>Software</th>
<th>Start</th>
<th>Update</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOP</td>
<td>G-Nut/Tefnut</td>
<td>9.4.2015</td>
<td>real-time</td>
<td>GPS, GLO, gradients</td>
</tr>
<tr>
<td>TUW</td>
<td>TUW software</td>
<td>15.4.2015</td>
<td>real-time</td>
<td>GPS</td>
</tr>
<tr>
<td>ROB</td>
<td>G-Nut/Tefnut</td>
<td>23.4.2015</td>
<td>real-time</td>
<td>GPS, GLO, gradients</td>
</tr>
<tr>
<td>ASI</td>
<td>Gipsy-Oasis</td>
<td>5.5.2015</td>
<td>hourly</td>
<td>GPS, gradients</td>
</tr>
<tr>
<td>UL</td>
<td>BNC, PPP-wizard</td>
<td>15.6.2015</td>
<td>real-time</td>
<td>GPS</td>
</tr>
<tr>
<td>ICS</td>
<td>G-Nut/Shu</td>
<td>12.7.2015</td>
<td>forecast</td>
<td>WRF model (EU, CZ)</td>
</tr>
<tr>
<td>TUO</td>
<td>RTKLib</td>
<td>5.11.2015</td>
<td>real-time</td>
<td>GPS</td>
</tr>
</tbody>
</table>

Real-Time Campaign – Recent Evaluations

Initial phase
- Common settings
- Software development
- Strategy enhancement
- Parameter extension
- Stability improvement
- Format standardization
- Continuous monitoring
- Benchmark exploitation

Final solution
- For a limited interval
- Synchronized data inputs
- Product final evaluation
Impact of NWM forecast length

NWM forecast

Provider: Institute of Computer Science, Czech Republic

Model: WRF 3.6

Domain: EU

Resolution: 9×9 km

Levels: 38 vertical

Software: G-Nut/Shu (GOP)

Assessment

Network: All benchmark

Period: 14 days

Predicted ZTD

Degradation:

1-2 mm / 6 hours

<table>
<thead>
<tr>
<th>NWP domain</th>
<th>Forecast window</th>
<th>Bias [mm]</th>
<th>Sdev [mm]</th>
<th>RMS [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>D01/EUR</td>
<td>0-6 h</td>
<td>-1.50</td>
<td>9.93</td>
<td>10.42</td>
</tr>
<tr>
<td>D01/EUR</td>
<td>6-12 h</td>
<td>-0.89</td>
<td>10.95</td>
<td>11.55</td>
</tr>
<tr>
<td>D01/EUR</td>
<td>12-18 h</td>
<td>-0.51</td>
<td>12.91</td>
<td>13.48</td>
</tr>
</tbody>
</table>
• GOP’s PPP with G-Nut/Tefnut using IGS Final and IGS real-time orbits + clocks

<table>
<thead>
<tr>
<th>ZTD (PPP, different inputs)</th>
<th>GNSS reference product (various)</th>
<th>Pairs #</th>
<th>Bias [mm]</th>
<th>Sdev [mm]</th>
<th>RMS [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGS final SP3</td>
<td>GOP final (Bernese/DD)</td>
<td>1319</td>
<td>+0.9</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>IGS01 RT simulated</td>
<td>GOP final (Bernese/DD)</td>
<td>1158</td>
<td>+2.4</td>
<td>5.8</td>
<td>6.4</td>
</tr>
<tr>
<td>IGS final SP3</td>
<td>GFZ final (EPOS/PPP)</td>
<td>1319</td>
<td>+0.4</td>
<td>4.1</td>
<td>4.2</td>
</tr>
<tr>
<td>IGS01 RT simulated</td>
<td>GFZ final (EPOS/PPP)</td>
<td>1158</td>
<td>+2.8</td>
<td>4.9</td>
<td>5.7</td>
</tr>
<tr>
<td>IGS final SP3</td>
<td>ERA-Interim (DNS)</td>
<td>219</td>
<td>-0.4</td>
<td>9.1</td>
<td>9.3</td>
</tr>
<tr>
<td>IGS01 RT simulated</td>
<td>ERA-Interim (DNS)</td>
<td>154</td>
<td>-2.1</td>
<td>9.0</td>
<td>9.4</td>
</tr>
<tr>
<td>IGS final SP3</td>
<td>Aladin-CZ (G-Nut/Shu)</td>
<td>1317</td>
<td>+0.7</td>
<td>7.6</td>
<td>7.8</td>
</tr>
<tr>
<td>IGS01 RT simulated</td>
<td>Aladin-CZ (G-Nut/Shu)</td>
<td>1158</td>
<td>+2.8</td>
<td>8.0</td>
<td>8.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GNSS PPP inputs</th>
<th>GNSS reference product</th>
<th>Pairs #</th>
<th>North gradient</th>
<th>East gradient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP – IGS final</td>
<td>GOP (Bernese)</td>
<td>1318</td>
<td>+0.09</td>
<td>0.38</td>
</tr>
<tr>
<td>RT – IGS01</td>
<td>GOP (Bernese)</td>
<td>1158</td>
<td>-0.03</td>
<td>0.46</td>
</tr>
<tr>
<td>PP – IGS final</td>
<td>ERA-Interim</td>
<td>219</td>
<td>+0.09</td>
<td>0.36</td>
</tr>
<tr>
<td>RT – IGS01</td>
<td>ERA-Interim</td>
<td>154</td>
<td>-0.05</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Real-Time Simulation – Kalman filter + smoother

- Final ZTDs: GOP’s Bernese (1h, network solution) and GFZ’s (15min, PPP)
- Simulated RT/NRT ZTDs (IGS01 from IGS RTS): GOP’s G-Nut/Tefnut software (5 min, PPP)
- NRT simulation (Kalman+smoother): different smoothing update: 15min, 1h, 2h, 4h, 24h
• PPP, G-Nut/Tefnut (GOP)
• IGS01 orbit & clocks
• Simulated near real-time
• Converged solutions
• High-resolution product

→ The precision of high-resolution ZTDs has been improved by smoother with delays up to 4 hours

→ Smoother hasn’t been able to improve accuracy of ZTD for sub-daily run
Summary

Troposphere gradients

- Extreme gradients observed in a dense network (up to 7mm)
- Significantly lower magnitudes of gradients observed in all NWPs
- In some situations varies significantly, new information for NWP nowcasting ...

Real-time development

- RT ZTDs using PPP and IGS RTS products in RT Demo campaign (6 contributions)
- StdDev 5-9 mm for stable solutions, Bias < 5mm (but still highly site-specific)
- Offline simulated ZTD estimates using IGS RTS and IGS Final products showed a mean degradation of 1 mm in StdDev and about 2 mm mean bias

NWM for external troposphere corrections

- Accuracy of NWMs is 8-12 mm
- ZTD mean accuracy degradation with longer prediction is 1-2 mm / 6 hours

Hydrometeors

- Non-negligible components in rare situations, may impact ZTDs up to 2 cm!
Acknowledgements

• IGS for data and variety of GNSS products and models (RTS, MGEX, Final, PCO/PCVs, ...)
• EUREF for reference frame GNSS stations
• EPOSA, SAPOS, ASG-EUPOS, CZEPOS, VESOG, GEONAS, Trimble for GNSS data
• ECMWF for global ERA-Interim re-analysis numerical weather model
• NCEP for Global Forecast System (GFS) numerical weather model
• CHMI for mesoscale Aladin-CZ numerical weather model

EU COST Action ES1206 for the financial support of this collaborative effort
Ministry of Education, Youth and Science of the Czech Republic for the financial support