Refined and site-augmented tropospheric delay models for GNSS applications

Daniel Landskron, Gregor Möller, Armin Hofmeister, Johannes Böhm, Robert Weber
Technische Universität Wien, Austria
\[\Delta L(e) = \Delta L_h^z \cdot m_{f_h}(e) + \Delta L_w^z \cdot m_{f_w}(e) \]

- \(\Delta L^z \): from IGS
- \(\Delta L_h^z \): calculated from \(p \) (measured or taken from models)
- \(\Delta L_w^z \): calculated via \(\Delta L^z - \Delta L_h^z \)
- \(m_{f_h}, m_{f_w} \): from real-time mapping functions such as VMF1

BUT: Many applications without access to data from NWM or IGS

\[\Rightarrow \text{empirical troposphere models} \]
Global Pressure and Temperature 2 wet (Böhm et al., 2015)

Empirical (blind) troposphere model providing:

\[\Delta L_w^z = 10^{-6} \times \left(k'_2 + \frac{k_3}{T_m} \right) \times \frac{R_d e}{(\lambda + 1) g_m} \]

Can we improve the empirical \(\Delta L_w^z \) by including in situ measured meteorological data?

formula of Askne and Nordius (1987)
Augmentation of ΔL_w^z

- no in situ measurements (= empirical only)
 \[\Delta L_w^z = L_w^{GPT2w} \]

- in situ measurement of T
 \[\Delta L_w^z = L_w^{GPT2w} + M \ast (T_{GNSS} - T_{GPT2w}) \]

- in situ measurement of T and e
 a.) \[\Delta L_w^z = L_w^{GPT2w} + M_1 \ast (T_{GNSS} - T_{GPT2w}) + M_2 \ast (e_{GNSS} - e_{GPT2w}) \]
 b.) \[\Delta L_w^z = 10^{-6} \ast \left(k_2' + \frac{k_3}{T_{m,GPT2w}} \right) \ast \frac{R_d e}{(\lambda_{GPT2w} + 1)g_m} \]
Augmentation of ΔL^z_w

Refined and site-augmented tropospheric delay models for GNSS applications (Landskron et al., 2016)

If user measures T and e => improve ΔL^z_w:

$$\Delta L^z_w = L^z_{w_GPT2w} + M_1 \times (T_{GNSS} - T_{GPT2w}) + M_2 \times (e_{GNSS} - e_{GPT2w})$$

Overall correlations:
- T with ΔL^z_w: 0.65
- e with ΔL^z_w: 0.85

Correlation plots for BZRG

Universal, global coefficients M_1, M_2:
- $M_1 = 5 \times 10^{-4}$ [m/°C⁻¹]
- $M_2 = 0.0092$ [m/hPa⁻¹]
Data

GNSS Data:
- 55 globally distributed IGS stations
- 4 epochs per day in 2013
- zenith total delay (ΔL^z) from IGS final tropospheric SNX-TROPO

Meteo Data:
- p, T, e from
 1) close-by weather stations (provided by ZAMG, blue dots)
 - max. 10km ↔ and 100m ↑ away
 - high quality
 2) in-situ measurements (provided by IGS, pink dots)
 - moderate quality

\[
p \Rightarrow \text{Extrapolation} / \text{Saastamoinen} \Rightarrow \Delta L^z_h
\]
\[
\Delta L^z_w = \Delta L^z - \Delta L^z_h \Rightarrow \text{Considered as "true" values}
\]
Comparison of ΔL_w^z for BZRG
Comparison of ΔL_w^z for ALIC
Results

Comparison of ΔL_w^z for ALIC
Comparison of ΔL^z_w for ALIC
Results

Comparison of ΔL_w^z for ALIC

IGS
GPT2w
GPT2w + T
GPT2w + T, e (a)
GPT2w + T, e (b)
Comparison of ΔL_w^z for NYA1
Results

Comparison of ΔL_w^z for NYA1
Comparison of ΔL_w^z for NYA1
Comparison of ΔL_w^z for NYA1

Results

Refined and site-augmented tropospheric delay models for GNSS applications (Landskron et al., 2016)
Results

Comparison of “true” ΔL_w^z from IGS with reproduced ΔL_w^z:

- Mean absolute difference in ΔL_w^z (averaged over all stations and epochs)

<table>
<thead>
<tr>
<th></th>
<th>ΔL_w^z [cm]</th>
<th>ΔL_w^z [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>empirical only (= GPT2w)</td>
<td>2.8</td>
<td>2.8</td>
</tr>
<tr>
<td>empirical + T</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>empirical + T and e (a)</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>empirical + T and e (b)</td>
<td>2.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

\[
\text{Corr. Coeff. (a)} = \text{mean}(|\Delta L_{wIGS}^z - \Delta L_{wGPT2w}^z|)\\
\text{Corr. Coeff. (b)} = \text{mean}(|\Delta L_{wIGS}^z - \Delta L_{wGPT2w}^{\text{mod}(2)}|)\\
\text{Corr. Coeff. (a)} = \text{mean}(|\Delta L_{wIGS}^z - \Delta L_{wGPT2w}^{\text{mod}(3\omega)}|)\\
\text{Corr. Coeff. (b)} = \text{mean}(|\Delta L_{wIGS}^z - \Delta L_{wGPT2w}^{\text{mod}(3b)}|)
\]

- Correlation coefficient (averaged over all stations and epochs)

<table>
<thead>
<tr>
<th></th>
<th>Corr. Coeff. (a)</th>
<th>Corr. Coeff. (b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical only (= GPT2w)</td>
<td>0.70</td>
<td>0.73</td>
</tr>
<tr>
<td>empirical + T</td>
<td>0.73</td>
<td>0.76</td>
</tr>
<tr>
<td>empirical + T and e (a)</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>empirical + T and e (b)</td>
<td>0.86</td>
<td>0.86</td>
</tr>
</tbody>
</table>

Refined and site-augmented tropospheric delay models for GNSS applications (Landskron et al., 2016)
Conclusions

• GPT2w well suited for site-augmented approach using in situ measurements of T and e
• in situ measurement of T yields small improvement in zenith wet delay ΔL^z_w (~5%)
• additional in situ measurement of e yields significant improvement in zenith wet delay ΔL^z_w (~30%)
 => not much difference which formula is used for e
• In general, best performance of site-augmented GPT2w is achieved in dry regions

Contact:
daniel.landskron@tuwien.ac.at