Cooperative IGS and GIRO Monitoring for Rapid Real-Time Insight into Global Ionospheric Weather

Ivan Galkin
University of Massachusetts Lowell, USA
Bodo Reinisch,
Xueqin Huang
Lowell Digisonde International, LLC, USA
Dieter Bilitza
George Mason University, USA
Andrzej Krankowski
University of Warmia and Mazury, Poland
Manuel Hernandez-Pajares
Universitat Politècnica de Catalunya, Spain
Adam Froń and Kacper Kotulak
University of Warmia and Mazury, Poland

IGS Workshop 2016
Sydney, Australia • 10 February, 2016
Outline

- Real-Time Assimilative Modeling with GIRO and IRI
 - GIRO /Global Ionosphere Radio Observatory/
 - IRI /International Reference Ionosphere/
 - NECTAR assimilation algorithm
 - GAMBIT analysis environment for IRTAM
- 3D Real-Time Ionosphere with IRTAM
- Cooperation: IGS VTEC and GIRO NmF2 & hmF2
 - Slab thickness
 - Adding B0
 - 3D accuracy
 - Topside half-thickness
 - Outlook

GIRO + IRI + NECTAR = IRTAM
(IRI-based Real-Time Assimilative Modeling)
HF Ionosonde

- First multi-frequency ionogram: 1931
- 1936: five ionosondes in the world
- 1957 (IGY): 150 ionosondes in the world
- 2016: <unknown #> ionosondes…
 - 231 ionosonde locations in NOAA SPIDR
 - 160 Lowell Digisondes®
Global Ionosphere Radio Observatory

~ 50 contributing ionosonde stations

IGS Symposium
Sydney, Australia
10 February 2016

Current real-time GIRO sites, Sep 2014
3D Ionosphere by IRI

Monthly median climatology

1D vertical profile of Ne

- **3D specification of Ne = 1D vertical profile** with 2D maps of its anchors
- **NmF2 and hmF2** – most important anchor that changes the whole profile
- **B0, B1, D1** – profile shape parameters
- E-layer, F1-layer, and E-F valley anchors are less sensitive to space weather dynamics

IRI Climatology success:
- foF2 error is 0.01 MHz ($\sigma = 0.78$ MHz)
- hmF2 error is 1.51 km ($\sigma = 25$ km)
- 1.5+ million monthly medians
- 7 solar cycles, 250+ ionosondes
- [Damboldt and Suessmann, 2011]

foF2: 200 kB worth of expansion coefficients

→ To capture real-time SPACE WEATHER:
- 1. Keep 3D formalism of IRI
- 2. Use ionosonde data to adjust anchor maps

Assimilative 2D Mapping
2D+Time Mapping of Anchors
Combination of global and diurnal expansions

[Jones and Gallet, 1962-1966]

One-time snapshot
76 coefficients C_k

One-day of each C_k
13 coefficients

One day in the life (DITL)
988 coefficients C_{ik}
Single-site Data Assimilation

- **4DDA algorithm**
 - 24 hour history used to perform one real-time assimilation
 - Robust to autoscaling mistakes
 - Slight improvement in hindcast mode
 - Day boundary filter of discontinuity

- **Output**: 13 adjustments ΔC_{0-12} to diurnal harmonic coefficients
 - Adjustments to IRI can be extrapolated spatially
 - Short-path modeling

This chart makes use of IARPA data from the HFGeo program. The IARPA Program Manager is Chris Reed.”
Real-Time IRI Configurations

A. Single-Site Assimilation

13 real-time adjustments to IRI coefficients in the vicinity of ionosonde (corrections valid for ~200 km)

No TIDs

B. Single-Site Assimilation with local tilt measurement

Local tilt evaluation by Digisonde HF skymapping for IRI transformation
Sensitive to TID passages within ~300 km area

C. Global Assimilation

988 real-time adjustments to IRI using all available Digisondes

IRTAM

These charts make use of IARPA data from the HFGeo program. The IARPA Program Manager is Chris Reed.”
Next Step: Above Peak Sensing

SLAB THICKNESS τ

Fig. 1. Schematic view of the vertical electron density profile with key characteristics such as the peak density ($N_m F_2$), peak height ($h_m F_2$), upper ion transition level (UTL), scale height (H_{sc}) and slab thickness (τ).

Stankov and Warrant, 2009
Complementing GIRO with GNSS

Total Electron Content Peak Electron Density Peak Density Height Slab Thickness

Deviation from expected quiet-time behavior
GAMBIT Database and Explorer

Public access to IRTAM retrospective and current results

Early release User Version 0.1C download (64-bit Java 7 or higher is required)
Early release GAMBIT Explorer User Guide 0.1C

http://giro.uml.edu/GAMBIT
Importance of B0 assimilation

- B0 parameter is needed to represent profile shape correctly
 - Without B0 assimilation up to 20 km height error in this example
- Warning: Observed Ne profile may have errors
 - IRTAM’s 24-hour 4DDA assimilation mitigates autoscaling errors
 - No autoscaling errors in this example

This chart makes use of IARPA data from the HFGeo program. The IARPA Program Manager is Chris Reed.
Outlook

- **Cooperative real-time newscast using GNSS VTEC and GIRO F2 layer profile**
 - Implementation is imminent
 - Current objective at GIRO: assimilate shape parameter B0
 - Current objective at IGS: Service integration with IRTAM
 - Services at Lowell GIRO Data Center and UWM IGS RTS node

- **Applications to space weather research and practice**
 - Intriguing capability of sensing topside ionosphere using ground observatories

- **GAMBIT environment in open source domain for data access and visualization**