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Objectives

« What is the impact of GLONASS observables on the
ground-based GNSS receiver bias estimation?

» Are there discernible (e.g., geographical) trends in
the GNSS receiver biases when estimating
GLONASS biases?

e How do JPL-derived receiver GPS biases compare
with other centers?
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Intfroduction
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Schematic depicting the vertical variability of the ionospheric electron number density (red
lines) and the integrated total electron content (TEC) (black line) between a GPS satellite
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Since the advent of the GLONASS constellation, little attention has been given to the
impact of GLONASS data on the quality of TEC maps and associated differential
receiver biases
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Sept 16, 2015 Chilean Earthquake and Tsunami

Detection Using GPS data

M8.3 Chilean Earthquake-Generated lonospheric Signatures on Sept 16, 2015
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Wave-Propagation Global lonosphere-Thermosphere Model

(WP-GITM) Derived TEC Perturbations and Inversion
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Background

Characteristics of the receiver differential biases:

1. Nearly constant over several days [e.g., Wilson and Mannucci, 1993]

2. Day-to—day variability: <1.0 TECU [e.g., Montenbruck et al., 2014]

3. Bias accuracies typically < 1.5 TECU [e.g., Sardon and Zarraoa, 1997; Ma et al.,
2005; Komjathy et al., 2005; Dear and Mitchell, 2006 and Sarma et al., 2008]

All the abovementioned results used only GPS observations.

Now, let us include GLONASS observables!

To—date, only a handful of studies exist to quantify the GLONASS satellite—receiver
biases [e.g., Wanninger, 2012; Mylnikova et al., 2015]. Yet, questions about the impact
of GLONASS on the receiver bias accuracy, daily scatter, and variability still

remain.
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Methodology

GNSS TEC Observation Equation:

TEC = M;(hy, E,) Z C1iB1i(A1, 1) + My (hy, E) z C2iB1i(43, ¢2) +

M;(hs, E3) Z C3iB3i(A3,¢3) + bsgps + brgps + br,GLONASSf(GLONASSf);

l \ Limiting factors affecting the TEC estimation ’
Basis functions Ground-based receiver differential code biases
(functions of lat/lon) GPS and GLONASS satellite biases

Here, we focus on characterizing the behavior of the receiver biases,

when including GLONASS observations
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Results (1/7)

Characterize the GPS receiver biases using GLONASS observables (Vergados et al., 2015)

Experiment set-up: We use a month’s worth of GPS receiver bias time series from a global network, which tracks both GPS
and GLONASS signals. We investigate the impact of GLONASS observations on the GPS receiver biases, and analyze our
results as function of latitude to identify trends in the receiver behavior (part of the “GPS lonosphere Support for NASA’'s Earth
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Results (2/7)

Investigating the GPS receiver bias stabilities with and without GLONASS observables
1.0 Bias difference by latitude
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JPL GPS+GLONASS and GPS-only solutions averaged magnitudes (systematically) shifted by < 1.0 TECU.
over 02/17/2015-03/31/2015. A map for 84 GNSS dual-
tracking globally—distributed stations is shown above. An ensemble of 84 GNSS receivers showed that
GLONASS observations systematically shift the GPS
receiver biases by up to 1.0 TECU.
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Results (3/7)

Investigating the GPS receiver bias stability
5 Receiver bias standard deviations (GPS+GLONASS)
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(A) Standard deviation of JPL’s GPS+GLONASS receiver biases as a function of latitude for all 84
stations. (B) Absolute difference of standard deviation with respect to the GPS—only solution.

Results:

» The GPS receivers bias scatter

is large for stations inside the
low latitude region (+£30°) and
decreases with latitude.

e GLONASS observations affect

the GPS bias scatter by a
maximum of + 0.15 TECU (no
latitudinal dependency is
observed).
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Results (4/7)

Investigating the impact of GLONASS observables on STEC measurements
Low latitude: THTI (17.6S, 149.6W)
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Results (5/7)

Investigating the impact of GLONASS observables on the STEC series
Middle latitude: WES2 (42.6N, 71.5W)
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Results:
esults.:

Mean residuals = 0.11 TECU (GPS)
Mean residuals = 0.09 TECU (GLO+GPS)

Feb 8-12, 2016 IGS Workshop, Sydney, Australia 13




Results (6/7)

all 84 stations
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One day (February 17, 2015) statistical analysis of GIM versus residuals using

(A) Histogram of the residual distribution
estimated by differencing the STEC GIM-
derived and observations using GPS only
signals; (B) same as (A) but using only
GPS and GLONASS signals.

Results:

Mean values:

GPS only mean residual = -0.08 TECU
GPS+GLO mean residuals = -0.06 TECU
25% improvement using GLONASS
Standard deviation around the means:
GPS only std. = 3.93 TECU

GPS+GLO std. = 3.87 TECU

Difference std. = 0.06 TECU

2% improvement using GLONASS
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Results (7/7)

Receiver bias series: HLFX Receiver bias difference: HLFX
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Conclusions: 81% of receivers show
differences < 0.5 TECU
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Conclusions

1) The GIM products indicate that GLONASS observations systematically shift
the GPS receiver biases by up to 1.0 TECU.

2) GLONASS observations affect the scatter of the GPS receiver biases by <
0.3 TECU (except for a few cases) with no discernable latitudinal pattern.

3) The GPS receiver bias scatter is < 1.0 TECU (for the majority of the
stations) except for some of the low-latitude stations.

4) Cross — center (CODE versus JPL) comparisons show a < 0.5 TECU
differences in GPS receiver biases.

5) GLONASS observations do improve GIM bias repeatabilities, indicating an
enhanced representation of the ionosphere compared to using GPS signals
alone.
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