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Motivation and Introduction

Purpose of this study Data

» GPS L3 carrier phase residuals and ZWDs from 4
stations at Wettzell Observatory (WTZR, WTZS,

Tropospheric Refraction

» Refractivity variations in Neutral Atmosphere form a significant error source for
space-geodetic techniques such as Global Navigation Satellite Systems (GNSS)
or Very Long Baseline Interferometry (VLBI)

» At the same time refraction variations are valuable as signal, which can be used
to enhance the modelling of neutrospheric refraction

» Especially micro-scale meteorological phenomena (turbulent properties) are little
studied and not yet considered in routine analysis, such as Reference Frame de-
termination

» Investigate the spatial structure of the troposphere from dis-
tributed GPS and VLBI stations at the Geodetic Observatory

Wettzell, Germany, by means of geostatistics WT33, and WT27) @1Hz from daily PPP Kalman
» Develop a strategy to find a suitable model to the describe spa- Filter s,olution for 3 days in Feb. 2015 (for setting

tial structure by including observations of different periods of see [Kube and Schén, 2016])

tCir;]nek]c D WD ¢ » VLBI (RTW) ZWDs @30min
> Check feasability of estimating Zenith Wet Delays ( s) for an Finally 18 hours of data on DoY 50 2015 from both

arbitrarily choosen epoch and line of sight (GPS or VLBI) from . .
an interpolated surface of ZWDs techniques were used for this study.

Analysis steps and Methods

o LTI T TTTTTT]IES Preprocessing
" i le.. I » GPS residual stacking according to [Fuhrmann et al., 2015] in order to re-
oA .}“,h, R duce the multipath influence. Since permanent GPS observations are not
LU available for W'T33 and WTZ27, multipath reduction was only possible for
WTZR and WTZS

» Reduction of VLBI and GPS ZWDs to commom height and removing trend
and offset from residual and ZWD time series
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» Computation of GPS Equivalent ZWDs (EZWDs) by mapping the resid- w00 | ' L
uals to the zenith and adding the ZWD, see Fig. 1(a) - residuals contain . Vo ™
mainly turbulence, since all other remaining effects are carefully modelld in 2000 s000 4000 (o w00 B0 e -
= our PPP algorithm, see Fig. 1(a) 5
o > Ch0.0SII?g VLBl ZWD epOChS (36 epOChS @30mm) as reference epOChS Fig. 3: Schematic representation of EZWDs projected to plane @1000m height (a) and EZWDs in the plane for sample
(b) P> PFOJeCtIng GPS EZWDs and VLBI ZWD to plane 1000m above Wetzell, see epoch GPSsod 12523 with convex hull (red line) and EZWDs of £+ 15min (b).
Fig. 1: Equivalent ZWD (EZWD) for WTZR (a) F|g 3(3) and 3(b)
and corresponding temporal structure funtions (b). Variogramm Computation and Fitting
Jally PPP EKF somtion » Setting up empirical variograms by computing semivariances y(h) = 2—1n > 7 [EZWD(x;) — EZWD(x; + h)] with lag distance h between points in plane, n the num-
— s ber of points within a distance class, here we used 300m, and x;, the local coordinate in the plane. Plotting the empirical semivariances against the distance shows
carrier ase enit et Delays . . ono . . .
/ esiduals (RES) / / o) / the spatial variability of EZWDs, see squares in Fig. 4(b) and Fig. 4(c).
T » Fitting variogram modells to the data [Stein, 1999] by means of least squares fit: Linear Model (1), Exponential Model (2), Matern Model with Exponent v = 1/3
(WTZR and WTZS) ( 3)
/MI hvd d sl / o t1h|=0 0 if |[h|=0 | h|
ut.ipat reduced slant i B h| _ exp B ; | =V, 0, if | h|=0,
residuals (MP_RES) Yap(h) =+ b(5), if0<|h[<a (1) Vs (h) = { h (2) Vabo(h) = N\ . (3)
. T o + b,< ) else, ot <1 oY <_?>) e - G+ b (1 a 2(”‘11)F(V) <2fa|h‘> Ky (2\/;“1')) else
roject to zenith wit \
" mapping function » Comparing the spatial variablity, e.g. the variogram parameter range a and sill b of a sample epoch by varying the number of epochs included in the variogram com-
SR AR ' putation, see Fig. 4(a) and 4(b). Nugget variance ¢; is omitted in this study.
ultipath reduced zeni reduce to _ _ _ T _ _ o _
/residua's (MP_ZRES) common height » Evaluating the quality of variogram fitting by computing the root mean squared error (RMSE) and correlation coefficient of the residuals.

Y Y

remove Trend and Offset per remove Trend and Offset

Ordinary Kriging Interpolation

SETAR R G TElie 25 BRI Ee SEITON » Surface estimation of EZWD by means of Ordinary Kriging, which uses the mathematical function specified with the variogram modell, see Fig. 5
Y Y : : : : : : : :
S / / educed ZWDs / » Evaluating the surface by cross-validation (leave-one-out): remove one GPS data location and predict the associated data using the data at the rest of the locations
(MP_ZQ ﬂf) and compare predicted and measured value by means of RMSE and mean absolute error (MAE)
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Fig. 2: Flowchart of the estimation of a tropo- Fig. 5: EZWD surface within convex hull of points from Ordinary Kriging

Fig. 4: General variogram description and three different variogram models used in this study (a), empirical variogram and variogram models fitted to the

heri face f Zenith Wet Del d PPP
Spheric strface from 2eni et Lelays an data of a sample epoch (b) and evolution of empirical variogram over time period of 18h @ 30min.

residuals.

Interpolation with apriori EZWD of GPS and VLBI stations.

Results and Findings

» Number and distribution of EZWDs in a single epoch is not meaningful for fitting a variogram, thus changing the number
of epochs included in the variogram for the current epoch: 1s, 5s, 10s, 30s, Imin, 10min, 30min, 1h:
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Fig. 6: Empirical variogram of sample epoch by including different number of observations for the variogram computation of the current epoch (a) and estimated variograms: ey BB OE | O .
Linear model (b), Exponential model (c) and M dtern model (d). Note: colorscale is the same for all plots. g2252; QNS BES EES NEE HEE =SS Se= RRR 2 Fig. 9: RMSE (top) and MAE (bottom)
’ =150 EEE SEE BEE EEE SRR SEE BRE BER = for cross-validation (differences EZWD -
8;222 g SEE NEE BEE BER | S 100 kriged value) for sample epoch and mean
.. . = e U e L LTI s 55 10s  30s 1min 5min 10min 30min  1h for all epochs (1st column Linear model,
» Empirical variogram gets smoother the more epochs are 40 1L poneniil /*\ 1 period of time for variogram computation 2nd column Exponential model and 3rd
. . . . = -e-matern 1/3 j i . ) ) ]
included, but small-scale variations get lost, see Fig. 6 Eao - /\ /\ 1 Fig. 8: Estimated variogram parameter range (top) and sil column M 4tern model). Note: colorscale
. .. : & % (bottom) for three different models (1st column Linear model ist the same as in Fig. 6(a)
S0 - 2 \ - | i : g. 0(a).
> Thre_e S_el_eCted \{arlogram mode!s show similar behaVIOl{r’ g | \/ \ //\e- / LA / 2nd column Exponential model and 3rd column M atern model).
no signigicant difference either in the RMSE of the vari- w0 AR Aa s o /\,/ . 4 . . . . . .
Il I » Since variogram fitting shows large residuals, the estimated EZWD surface is

ogram residuals, the correlation coefficient, see Fig. 7 or
the estimated variogram parameters, see Fig. 8

to smooth, see Fig. b.
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» Cross-validation: Mean absolute error is negative for all models and epochs
iIn mean, indicating that the kriged EZWDs are a little to big w.r.t. to ob-
. . served values. The more epochs are included for the variogram estimation,
creases the correlation between empirical values and se- | . .
. the smaller the rmse of the differences between observed and kriged EZWDs,
lected model, see Fig. 7 ol

923 8123 15323 22523 29723 36923 44123 51323 58523 . ses F| g. 9

» decrease the estimated range parameter and increases time [GPSsod] . . . . .
the estimated sill variance. see Flg 38 Fig. 7: RMSE of the variogram residuals (top) and correlation coefficient (bottom) > C|UStermg of points should be considered in future, €.8- by using Composed

. _ _ between empirical and fitted variogram for three different models. Note: colorscale Variograms with variable size of |ag distances
for the majority of investigated epochs ist the same as in Fig. 6(a).

» Including more epochs in the variogram computation
» reduces the RMSE of the variogram residuals and in-
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