Revisiting the origin of GLONASS inter-frequency phase biases and its implication to IGS Bias-SINEX products

Jianghui GENG

GNSS Research Center, Wuhan University, China

“Antennas & Biases” IGS Workshop 2017

3-7 July 2017

Paris France
GLONASS ambiguity resolution is difficult!

- Diverse frequencies across GLONASS L1/L2 bands
 - Inter-frequency phase biases (i.e. IFPB) at receivers
 - IFPBs don’t cancel after differencing between satellites

Takac et al. Inside GNSS 2009
Aha, inter-frequency biases can be corrected

- IFPBs are linear function of frequency channel numbers
 - IFPBs appear to depend on receiver types/families
 - L1 and L2 signals seem to share identical IFPBs

Sleewaegen et al. Inside GNSS 2012
In fact, it’s differential code-phase bias that matters

- Sleewaegen (2012) found that
 - Differential code-phase biases (DCPBs) are the physical origin of IFPBs
 - DCPBs consist of DSP and hardware induced parts
 - DSP induced DCPBs are fixed values for a specific receiver type
 - Hardware induced DCPBs are negligible for all phase observables

Sleewaegen et al. Inside GNSS 2012
Mysteries of IFPBs/DCPBs

- **Question 1**: Uncertainty of IFPB/DCPB estimates?
- **Question 2**: Receiver type specific IFPBs/DCPBs suffice or not?
- **Question 3**: One IFPB/DCPB for a receiver type suffice or not?

Wanninger Journal of Geodesy 2012
First, a little bit of math for DCPBs

- Pseudorange and carrier-phase have different clocks and hardware biases.
 \[
 \begin{align*}
 \Delta P^i_g &= \Delta \rho^i + c \Delta t_P + c \Delta b^i_{P,g} \\
 \Delta L^i_g &= \Delta \rho^i + c \Delta t_L + c \Delta b^i_{L,g} + \lambda_q^i \Delta N^i_q
 \end{align*}
 \]

- Therefore, a common clock assumption results in DCPBs,
 \[
 \Delta L^i_g = \Delta \rho^i + c \Delta t_g + c \Delta B^i_g + \lambda_q^i \Delta N^i_q
 \]

- which consist of DSP and hardware induced parts.
 \[
 \begin{align*}
 \Delta B_g &= \Delta B_{DSP} + \Delta B_{HW,g} \\
 \Delta B_{DSP} &= \Delta t_L - \Delta t_P \\
 \Delta B_{HW,g} &= \Delta b_{L,g} - \Delta b_{P,g}
 \end{align*}
 \]

Hardware and observable dependent
In theory, how do DCPBs relate to different observables?

- DSP induced DCPBs B_{DSP}
 - is constant for all observables (wide-lane, narrow-lane, etc.)
- Hardware induced DCPBs $B_{HW,g}$
 - is however observable dependent
- In fact, we have for ionosphere-free and wide-lane DCBPs that
 \[\Delta B_{IF} = 2.53125 \Delta B_1 - 1.53125 \Delta B_2 \]
 \[\Delta B_w = 4.5 \Delta B_1 - 3.5 \Delta B_2 \]

- Clearly, if $\Delta B_1 = \Delta B_2$
 \[\Delta B_1 = \Delta B_2 = \Delta B_{IF} = \Delta B_w \]

Is this true?
$\Delta B_{HW,g}$ matters or not, subject to uncertainties of DCPBs

- **How to estimate DCPBs**
 - use wide-lane and narrow-lane ambiguity fixing,
 - but wide-lane fixing can be difficult over baselines of 1000+ km because
 - Melbourne-Wübbena combination doesn’t work and
 - no precise ionosphere data for wide areas can be used

- **Repeatabilities of DCPBs over a long period**
 - The risk is whether DCPBs should be physically stable or not

Wanninger Journal of Geodesy 2012
How to estimate DCPBs for a huge network

- An efficient method for huge networks (Banville 2016; Liu et al. 2016)
 - can be applied to a broad/global network of stations
 - use only ionosphere-free ambiguity fixing,
 - though its wavelength is only ~5.3 cm which
 - isn’t a big problem on account of the quality of IGS final orbit products
 - Note that only ionosphere-free DCPBs can be estimated

- We compare these DCPB estimates with those from ultra-short baseline solutions
 - DCPBs from ultra-short baseline solutions are easily achievable and presumed as benchmarks
 - We can take this to assess the accuracy of DCPBs
Data and processing

- 212 days of data in 2015
- 200 stations involved
 - DCPBs for ionosphere-free observables are estimated in a network solution
- 10 ultra-short baselines (<210m) across Europe
 - DCPBs on L1 and L2 are directly estimated
Uncertainties of DCPBs

- 0.7 ns (RMS) for ionosphere-free DCPBs against L1/L2 DCPBs
- L1/L2 DCPBs can be quite different
 - DCPBs are actually observable dependent
- DCPBs vary with time which can be significant
 - Repeatabilities will then be problematic to quantify DCPB precisions
DCPBs specific to receiver types or stations?

- DCPBs can be quite different among the same types of receivers by up to 30 ns

 - These differences are statistically significant
 - The differences are subject to not only receiver types, but also antennas, domes, firmware, etc.
How will the “30 ns” affect ambiguity resolution?

- Biases on ambiguities in cycles due to DCPB:

\[\xi_g = \Delta B_g (h^i - h^j) \Delta f_q \]

Channel number difference (at most 13)

\[
\begin{align*}
\xi_1 & \rightarrow 0.22 \text{ cycle} \\
\xi_2 & \rightarrow 0.17 \text{ cycle} \\
\xi_w & \rightarrow 0.05 \text{ cycle} \\
\xi_n & \rightarrow 0.39 \text{ cycle} \\
\xi_{en} & \rightarrow 0.78 \text{ cycle}
\end{align*}
\]

Wide-lane is little affected while ionosphere-free is most.
Which observable specific DCPBs to provide for users?

- DCPBs on L1 and L2 signals can differ by up to 10 ns
 - What if we use L1 DCPBs for ionosphere-free ambiguity resolution?
- Ionosphere-free DCPBs are preferred
 - High efficiency to compute
 - L1, L2 and wide-lane are more resistant to DCPB errors
Implications to IGS Bias-SINEX products

- DCPBs of sub-ns accuracy can be achieved over a large network by efficiently resolving ionosphere-free ambiguities;
- DCPBs should be estimated and applied on account of their station and observable specific properties, especially for ambiguities of short wavelengths.
 - DCPBs can differ significantly by up to 30 ns for the same types of receivers
 - Provide both L1 and L2 DCPBs if possible, otherwise ionosphere-free DCPBs are preferred. Their difference can be up to 10 ns
- More details and interesting aspects refer to
Thanks for your attention

jgeng@whu.edu.cn
jhgeng1982@gmail.com
Homepage: pride.whu.edu.cn