Improving the Resilience to Interference of a GNSS Reference Station

Dr. Youssef Tawk
Product Application Specialist
Leica Geosystems
Outline

- What is Interference for GNSS Reference Station?
- Interference Sources
- Leica Geosystems ITK
- Test Case Examples
- Summary
What is Interference for GNSS Reference Station

- Interference is a phenomenon where undesired signals enter the GNSS reference station receiver and mix with the satellite navigation signals to disrupt the operation of the receiver, causing:
 - Partial or total loss of lock
 - Reduced and/or noisy SNR
 - Reduced ability of the receiver to properly operate to provide reliable raw observation data, corrections, and compute a position.

- when it has to be right

Leica Geosystems

IGS Workshop - July 2017, Paris
Interference Sources

Increasing amount of sources of GNSS interference

- **In-Band**: Within band of GNSS signal. Intentional jammers, other RF spectrum users (legal or not)

- **Near-Band**: Close to band of GNSS signal. Includes legal transmissions such as Globalstar and long-range air traffic control radar

- **Out of band Harmonics**: Far removed transmitters that may have spurious harmonic emissions overlapping GNSS band

- **Self Interference**: Electronics integration often requires solving in-band, near-band and out of band harmonics from within the product itself
Leica Geosystems ITK

- ITK stands for Interference Tool Kit
- A software upgrade on Leica’s GR30/50 reference station receivers:
 - Allows the user to visualize the frequency spectrum:
 - Easily detects interference by visual inspection
 - Automatic Interference detection
 - Adaptive interference rejection technologies for strong interference situations using three methods:
 - HDR mode - High dynamic range mode performing a wideband mitigation
 - Band pass filter
 - Adaptive notch filter
Test Case Examples

Test case examples:

- In band Continuous Wave (1582.5 MHz, -44 dBm)
- Out of band Narrowband (1625 MHz, 1.2288 MHz CDMA, -14 dBm)
- Out of band Wideband (1625 MHz, 10 MHz, LTE, -28 dBm)

Receiver performance before and after mitigation:

- Average GPS L1 C/No, over all satellites tracked for each epoch
- Number of Satellites tracked
- RTK position accuracy
Test Case Examples
In Band Continuous Wave

Normal/Healthy GPS L1 Spectrum
Test Case Examples
In Band Continuous Wave

In Band Continuous Wave Interferer
Test Case Examples
In Band Continuous Wave

Mitigated In Band CW Interferer (HDR mode & Notch filter applied)
Test Case Examples
In Band Continuous Wave

Before Mitigation

After Mitigation

Average C/No (dB-Hz)

Satellites Tracked

3D RTK Position Error (m)
Out of Band Narrowband Interferer (e.g. GlobalStar)
Test Case Examples
Out of Band Narrowband

Mitigated Out of Band Narrowband Interferer (HDR Mode)
Test Case Examples
Out of Band Narrowband

Before Mitigation

After Mitigation

Average C/No (dB-Hz)
Satellites Tracked
3D RTK Position Error (m)
Test Case Examples
Out of Band Wideband

10 MHz LTE Centred at 1625 MHz
Test Case Examples
Out of Band Wideband

Mitigated OOB WB Interferer (HDR Mode)
Test Case Examples
Out of Band Wideband

Before Mitigation

After Mitigation

Average C/No (dB-Hz)

Satellites Tracked

No Position

3D RTK Position Error (m)
Summary

Interference Tool Kit (ITK)

- Power Spectrum Visualisation and Mitigation technologies for Leica’s GR30 / GR50 reference station receivers
- Demonstrated and will become available as future software upgrades
- Efficient interference rejection of strong interferers becomes possible
 - In-Band Continuous Wave
 - Out of Band – Narrow band
 - Out of Band – Wide band
- Satellite tracking and signal quality can be largely preserved
- High quality Precise Positioning remains possible
The best answers combine the smartest solutions
The Leica Spider family of products provide all you need for smart solutions. From single base stations to comprehensive infrastructure RTK networks.

GNSS Networks and Reference Stations
Smart Solutions from Leica Geosystems