CONVENIENT MODELING OF SECOND ORDER IONOSPHERIC EFFECTS ON GPS USING GIMs FOR OPERATIONAL NETWORK SOLUTIONS
Miguel Garcia-Fernandez, Shailen D. Desai
Near Earth Tracking Applications, JPL/Caltech, Pasadena, CA, U.S.
contact: miguel.garcia@jpl.nasa.gov

Abstract

The GPS signal was designed as a dual-frequency system so that the main source of error, the ionosphere, could be removed to first order. However, the contribution of second (and higher) order effects on the range and phase measurements amounts to several centimeters. These effects in particular impact the use of GPS data to realize the Earth’s reference frame: they cause a shift of up to 10 mm (in high solar activity periods) in the estimation of the origin of the Earth’s spin axis (Z axis). To remove this effect, a model based on the Earth’s magnetic field and the Total Electron Content (TEC) along the line-of-sight is commonly employed. While the former is usually computed with the International Geomagnetic Reference Field (IGRF), the latter can be obtained by (a) the ionospheric combination of GPS data calibrated by the differential code biases (DCB) or (b) by an external Global Ionospheric Model (GIM). The second method covers GIMs in the form of e.g. IONEX maps or climatological models such as the International Reference Ionosphere (IRI).

We show that the agreement of these approaches, in terms of the Z-axis origin of the realized reference frame, is around 1 mm. Among these methods to obtain the TEC, the DCB approach is considered to be the most accurate because, as opposed to the GIM methods, it does not need a mapping function to convert from Vertical TEC to Slant TEC. However, the DCB approach poses a challenge for routine operations: it requires the knowledge of the DCBs for all GPS stations that take part in the reference frame estimation. Given the fact that, in routine operations, the stations might vary from day to day, the DCB approach requires a database of time-dependent DCB values that needs to be regularly updated. We show that the GIM approach is a more convenient approach for operations because it does not require maintaining a database of time- and station-dependent DCBs. As such, the GIM approach allows for simpler operations while offering a similar level of accuracy as the DCB method. Recommendations on the processing details for the GIM models (e.g., shell height) to achieve the closest results relative to the DCB method are also given.

Methodology

The second order ionospheric effect on GPS measurements (Δf_{l}^{2}) can be modeled using a thin shell assumption:

$$\Delta f_{l}^{2} = f_{o}(o,B,STEC)$$

- $o = \text{frequency}$
- $B = \text{magnetic field (International Geomagnetic Reference Field, IGRF)}$
- $\text{STEC} = \text{Slant Total Electron Content}$

Possible models for STEC:

<table>
<thead>
<tr>
<th>STEC source</th>
<th>Needs additional data?</th>
<th>Uses mapping function?</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCB (Isonospheric combination)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>GIM/IONEX (Derived from maps of VTEC)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>GIM/IRI (Derived from modeled VTEC)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

DCB is considered the most accurate (i.e. does not need a mapping function). However, for operational settings, the DCB approach requires the maintenance of a database of all DCBs of the receivers involved in the process. And these receivers might vary from day to day. This makes the DCB approach challenging for operational implementation. A simpler approach using GIM (IRI or IONEX) offers compatible results with much simpler maintenance for operations.

Settings of the second order ionospheric correction used in JPL’s current reprocessing campaign (Repro 2.1) and comparison with previous campaigns:

<table>
<thead>
<tr>
<th>Repro campaign</th>
<th>GIPS version</th>
<th>Second order ionospheric correction</th>
<th>Model used</th>
<th>Effective height (mapping function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 (2009)</td>
<td>5</td>
<td>Yes</td>
<td>GPS data NOT calibrated with DCB</td>
<td>n/a</td>
</tr>
<tr>
<td>2.0 (2011)</td>
<td>6.0</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1 (2014)</td>
<td>6.3</td>
<td>Yes</td>
<td>IRI <= 1998 (1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IONEX >= 1999 (2)</td>
<td>600 km</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1) IONEX maps not available before mid 1998</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(2) JPL maps IONEX format (“jps1g”) from CDDIS</td>
<td></td>
</tr>
</tbody>
</table>

Z Translation of the Earth’s center (T_Z)

- The second order ionospheric correction causes a southward (T_Z) translation of the reference frame of 3-10 mm in average, depending on solar cycle
- T_Z translation when using GIM (IRI or IONEX) agrees to 1 mm relative to the DCB approach, when using an effective height of 600 km in the mapping function.
- There is no noticeable jump in the IRI to IONEX transition (1999). The date of the switch was low solar activity, which implies small differences between the two GIM models.
- As expected, differences between Repro 2.0 and Repro 2.1 increase with solar activity, when the second order ionospheric effect is larger.
- The daily T_Z values show a scatter with RMS of 6.5 mm, 6.5 mm and 7.0 mm relative to its smoothed version for Repro 1.0, Repro 2.0 and Repro 2.1 respectively (smoothing method: Gaussian smoothing with a window of 180 days)

Periodogram of the Z translation

- A comparison of the periodograms for the T_Z translation indicates a noticeable reduction of energy at annual (1 year) and solar cycle (11 years) components of Repro 2.1 relative to Repro 2.0.

Conclusions

- DCB approach is challenging for operations where the network of receivers change from day to day. Instead, GIM models are recommended: use IONEX if possible, or IRI for older periods where IONEX maps were not available (before mid 1998)
- DCB versus GIM methods agree to ca. 1 mm in the realization of the T_Z translation (TZ) of the reference frame, when an effective height of 600 km is used. Lower effective heights (e.g. 450 km) will create biases larger than 1 mm between the DCB and GIM methods.
- Comparisons of TZ between Repro 2.0 and Repro 2.1 shows reduction of annual and solar cycle (11 year) components.
- IRI provides the least accurate results since it is a climatological model, but differences relative to other models tend to diminish in low geomagnetic activity. IRI is useful when no VTEC or DCB values are available (e.g. mid 90s and earlier).

References
