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Abstract

We use three types of geometry-free (GF) code and phase observables formed by triple frequency signals to analyse the uncalibrated
code delays (UCD) and uncalibrated phase delays (UPD) and inter-system biases (ISB). In each of the GF phase observables, the
lumped phase bias (LPB) that contains a higher-order ionosphere-delay , UPD and UCD, integer ambiguity and ISB terms is generally
modelled through a polynomial regression model to account for its time-variations. With a network of multiple receivers, reliable double-
differenced (DD) wide-lane and narrow-lane integers (and non-integers) can be obtained by averaging over a long data arc. A
network-adjustment procedure is introduced to estimate the UCDs and UPDs, with a boundary condition to overcome the rank
deficiency problem and the known DD integers as constraints to remove the effects of ISBs. Numerical results demonstrate how these
models and algorithms determine LPBs, resolve the correct DD integers, and estimate satellite- and receiver-specific UCDs and UPDs.

GNSS observation equations and definitions of
combinations (6 iIndependent)
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Motivation:

Processing of multiple GNSS and multiple frequencies

require understanding and handling of biases and delays

between:

o different GNSS systems;

 between different signals; and

« dependence of signals on satellites and receivers.

Existing approach uses original code and phase

observational models, and explicitly describe the

observations as the functions of various biases and state

parameters, to estimate all together.

e This requires artificial conditions to overcome the
inear dependence and rank deficiency.

e Itis compute intensive.

We use the geometry-free(GF) and quasi-ionosphere-

free(QIF) combinations shown in the above table and

estimate UCDs and UPDs independently from the

estimation of satellite and receiver states. The overall

process is to determine the LPB for each GF/QIF model

first, and then separate the UCDs and UPDs from the

adjusted LPBs.

Estimation of LPBs for each GF/QIF model:
The estimation of LPBs is completed by two steps.

STEP 1 — Station-based estimation of lumped phase biases
(LPB) over a satellite pass or many hours. It is experienced
that the 3 and 4-degree polynomial models fit the GF/QIF
wide-lane and narrow-lane observables respectively well,
as shown in Figure 1 for GMSD to GPS GO01 satellite.
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Figure 1. Scattered GF observables and LCB/LPB
solutions by polynomial fitting
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Geometry-free /guasi-ionosphere-free observation equations

(GF/QIF) (4 iIndependent)

UPD (cycle : 3.404m)

UCD (metre)

UPD (cycle : 5.861m)

QZSS. Results show that the wide-lane integers
can be correctly fixed within a few minutes of
samples. For the two DD narrow-lane integer
solutions, much longer cumulative time is
required to reach stable and reliable integer
solutions.

Code, Widelane and Narrowlane models for
UPD,ISB, and ambiguity terms
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Figure 2. Stability of DD code filtered (a) , wide-lane (b)
and narrow-lane (c) and (d) integer solutions

Baseline GF1 GF 2 GF 3 GF 4 GF 5 GF 6
: Unit: 1 m 0.862m 5.86m 0.10/m 3.404m 0.10/m
SNOGI:IJ\Q\;((;LKS.adJUStment e Mean/std | Mean/std Mean/std Mean/std Mean/std Mean/std
| CUTO-SIN1 | -2.740/0.013 | 0.277/0.004 |0.545/0.001 |0.360/0.252 |0.0385/0.010 | 0.029/0.035
AgRis < C(_)mpares the nQISGS O_f QlF_COdeS GMSD-SIN1 | 0.064/0.001 |0.883/0.008 |0.026/0.001 |0.609/0.180 |0.962/0.009 |0.323/0.071
and QIF wide-lane after its LPB Is estimated
and adjusted showing their consistence and JFNG-SIN1 | -0.045/0.015 | 0.100/0.002 |0.994/0.000 |0.600/0.153 |0.733/0.005 |0.608/0.035

a much lower-noise level of the QIF wide-
lane. This is one of the significant advantages
of triple frequency.

Based on the network-adjusted LCB/LPB
solutions, we estimate satellite-specific
UCDs/UPDs for GO1 and JO1, and station-
specific UCDs/UPDs for GMSD, JFNG and SIN1,
as shown in Figure 4. The UCD/UPD for CUTO
station is fixed to zero as a reference station.
The effect of ISBs on UCD and UPB estimation
have been corrected through the DD
constraints in the network adjustment process.

Figure 4. UCD and UPD solutions for G01, JO1,
GMSD, JFNG and SIN1. CUTO is the reference

Table 2. Mean values of DD GF observables over 200 minutes and the standard
deviation for the mean values over the last 30 minutes, showing the high
stability of the wide-lane mean solutions and lower stability of the narrow-lane

solutions
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summary:

Use of GF/QIF combination of triple frequency signals
allows the receiver and satellite specific hardware-
biases to be estimated independently of the
estimation of satellite and receiver states. The overall
process is to determine the LPB for each GF/QIF
model first , and then separate the UCDs and UPDs
from the network-adjusted LPBs. The adjusted LPB can
be directly used for network-based data processing

station.
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for estimation of satellite and receiver states. The

second-order ionosphere-delay can also be

1| estimated from the GF/QIF equations for narrow-

lanes. Numerical results have demonstrated the

Time (GPST)

process and good performance of LPB, UPD and DD
GF solutions.
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