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Abstract

The GNSS&Meteo group at the Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (WUELS), Poland is continuously working on GNSS meteorology since 2010. Currently group maintains real-time (RT)
service collecting GNSS and meteorological data and near real-time (NRT) services for estimation of Zenith Troposphere Delay (ZTD), Zenith Hydrostatic Delay (ZHD), Integrated Water Vapour (IWV) and GNSS tomography over the territory of Poland. Data
are obtained with high resolution from EUREF Permanent Network (EPN) stations and Ground Base Augmentation System (GBAS) called ASG-EUPOS (www.asgeupos.pl). The ground meteorological observations in the area of Poland and neighbour
countries are available from: ASG-EUPOS stations included in EUREF Permanent Network (EPN), airport meteorological stations (METAR) and stations managed by national Institute of Meteorology and Water Management (SYNOP).
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processing (L3/L5 strategy) of ASG-EUPOS network (IGGHZ-G). Product is available since
December 2012 via E-GVAP data centre (egvap.dmi.dk) (Fig. 1) as WUEL stream. All ZTD
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Zenith Tropospheric Delay Figure 2 shows residuals of ZTD and
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PW/IWV as a water vapour data source,

Time
m

The information about contents of water vapour (2-D model) above
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temperature and water vapour parameters are interpolated from e — time with known accuracy. First step in building this model is to inter-compare all available data sources

and to establish the accuracy of parameters. The main data sources were compared: ground-based
GNSS products on ASG-EUPOS stations, NWP model COAMPS (Coupled Ocean/ Atmosphere

The first method of interpolation of meteorological parameters WV bias (IGGHZ-G/M vs HIRLAM model) WV bias (IGGHZ-G/M vs AC combined) Mesoscale Prediction System), vertical profiles from radiosonde (RS) and surface meteorological
is based on weighted mean value from four nearest stations: parameters from ground-based stations: EUREF Permanent Network (EPN) stations, airport

neighbour in-situ stations (SYNOP, METAR).
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The TOMO2 GNSS tomography model (Fig.1) developed at WUELS . CDAAC/TAAC processing center. The analysis was performed i, § s_i i s wos b v %ot 5
combine the a priori NWP data with GNSS troposphere delay observations " in terms of various spherical distances with respect to | , Ben0—swie
to obtain the 4D wet refractivity model over the GNSS network. TOMO2 is L radiosonde location using the parameters of pressure, ' R
now used within the frame of COST ES1206 Action: GNSS4SWEC to \ | temperature and refractivity. The comparison for GPS-RO
severe weather monitoring. Currently it is working in NRT mode (1hour profiles located between 50 to 100 km (Fig. 1) far from { :
interval with 10 minutes delay) over the area of ASG-EUPOS network in radiosonde station at altitudes over 8 km showed an agreement g )
Poland. The TOMO2 model has unique features: use of Kalman filters of 0.45 units for refractivity, 0.35 hPa for pressure and 2 Kelvin Fig o
for temperature expressed as standard deviations. If the '

instead of ordinary least squares method, model nesting (Fig 2.a) to account
for low satellites signal, flexible setting of voxel number and layer thickness
(Fig 2.b) and choice of different methods to find Kalman gain matrix. The
tomography technique has been applied to study severe storm in Australia.
The refractivity fluxes (Fig. 3 color-coded red increase and blue decrease of
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model TOMO2 show good agreement with NWP data especially in the g - =
troposphere layer between 2 and 6 km. A e O NS E Summary

06.03.2010 04:00 ﬁ 06.03.2010 05:00 ﬁ 06.03.2010 06:00 : All mentioned above activities of WUELS are performed to produce the most reliable NRT

Wet refractivity distribution from NT TOMO2 model troposphere product for meteorology and positioning. The next step is to develop the ultra-fast (5

min) ZTD processing with Bernese GNSS Software V.5.2 and operationally combine this product with
ZHD obtained from meteorological data to achieve IWV in 5 min. intervals as well.
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validation of tomography models and 4.3.3 Integration of GNSS atmosphere models with NWP

100~
m y h =500 I‘Tl cap}
Lf A ' ‘W\'\A'“ ""“I N\
models of Sub-Commission 4.3: Remote Sensing and Modelling of the Atmosphere in COMMISSION
4: Positioning & Applications of International Association of Geodesy

) | LIM _20Wet rgfractiviZt())/ [pmeZO - 0 \ 2 0 ° A Ckno Wledgmen t:

Authors thanks to Dr Karolina Szafranek (Military University of Technology in Warsaw AC) for reference
troposphere data from ASR (Rapid) solution of ASG-EUPOS. This work has been supported by the Wroclaw
Center of Networking and Supercomputing (http://www.wcss.wroc.pl/) computational grant using Matlab
Software License No: 101979.

So%

%
g_
{

Fig.4~ ~ i R Fig. 5

WROCEAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES




	Strona 1

