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ABSTRACT 
The goal of this work is to investigate the sensitivity of the estimation of the secular motion of cGNSS stations to several different physical conditions and statistical modeling. We use stations installed in the framework of a 
collaborative project between JPL and SEGAL that has contributed to densify the global network maintained by JPL. These stations sample the global networks in terms of local environment and spatial distribution on Earth. 
Our input data are daily positions computed using GIPSY-OASIS (PPP approach) and mapped into the IGS08b reference frame that we use to investigate two major parameters in the estimation of the secular motions: 
(a) Is indeed the conventional power-law plus white noise model the best stochastic model? Or can different models be applied depending of the local environment of the station, in particular the monument type? In this 
respect, we apply different noise models using HECTOR (Bos et al., 2013), which can use different noise models and estimate offsets and seasonal signals simultaneously, to investigate how much the choice of a certain 
stochastic model can change the estimated motion and if correlation exists between the used model and the monument characteristics. 
(b) How much the existence of data gaps in the time-series can influence the estimation of the secular motion (and also seasonal signals)? Performing several tests with different sub-sets of the same original time-series for 
several stations permits us to evaluate the maximum acceptable percentage of data gaps (and also their temporal distribution) that does not cause significant variations in the estimated values.  
This study intends to contribute to improve the estimation of the secular motions by defining best approaches and real constraints on the robustness of the derived motions. 
 
 
INTRODUCTION 
 
The stations installed in the framework of the JPL-SEGAL 
collaboration in the last six years are shown in Figure 1. 
We just consider in this study the stations installed more 
than 2 years ago. UFAB is not an exception because it was 
installed in 2011 - although we just have data for the last 1.6 
years. 

CONCLUSIONS 
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Figure 1 - (Red) stations analyzed in this work; (Blue) other JPL stations 
installed in collaboration with SEGAL.s  

Table 1 - Details of the time-series 
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Figure 5 - Power spectra of the residuals for the 
6 GNSS stations, East  

Figure 6 - Power spectra of the residuals for the 
6 GNSS stations,  North 

Figure 2 – MONM North 
component time series Figure 3– VACS North 

component time series 

Figure 7 – MONM East  component power spectra 

Figure 9 – VACS East component power spectra 

The raw GNSS observations were processed with the GIPSY-
OASIS II software (Webb and Zumberge 1995) using the PPP 
method (Zumberge et al. 1997) to produce daily solutions 
that were subsequently mapped into ITRF2008 (Altamimi, 
Métivier, and Collilieux 2012). The linear trends were 
estimated using the HECTOR software (Bos et al. 2013) that 
takes into account the temporal correlations that exist within 
the data. This temporal correlation is represented by a noise 
model such as power-law noise plus white noise. The 
parameters of this noise model are estimated in HECTOR 
using maximum likelihood estimation. 

The position time-series for the North component for the 
stations MONM, VACS and STHL  are shown in Figures 2, 3 
and 4. MONM has a short data span with significant data 
gaps. VACS and STHL have records of 4 and 6 years with 
almost no missing data (and only 1 offset identified at VACS).  

In this research we investigated 6 GNSS stations that were 
installed in the framework of RATINHA, a collaborative project 
between JPL and SEGAL. These stations are located at very 
different locations, using different monument types.. 
Nevertheless, we could not find significant difference in the 
magnitude and behavior of the noise in the observations. 
Several time-series suffer from to various degree from missing 
data. To investigate how this affects the estimated trend 
uncertainty synthetic time-series were generated with various 
amounts of data gaps. We showed that missing data has little 
effect on the trend uncertainty but causes the maximum 
likelihood estimation to favor a pure power-law noise model 
with higher spectral index above a, more correct, power-law 
noise model with lower spectral index plus white noise. 
 

INVESTIGATION OF VARIOUS NOISE MODELS 

Using the Bayesian Information Criterion (Schwarz 1978) we determined that Power-
law plus white noise describes the noise slightly better than GGM plus white noise for 
all stations. Nevertheless, the two models give similar results for the estimated trend 
uncertainty. The AR(5) noise model however performs significantly worse at all 
stations.  
This is clearly shown in Figures 7 to 10, where we observe that the AR(5) model 
flattens out at the low frequencies while most GNSS observations continue to show 
increasing power for decreasing frequency. As a result, AR(5) underestimates the 
estimated trend error on average by a factor of 2. 

EFFECT OF MISSING DATA ON THE ESTIMATED TREND 
ERROR 

Nowadays it is customary to use a power-law plus white noise model to describe the 
stochastic properties of the GNSS observations. An alternative would be the 
Generalized Gauss Markov (GGM) model of Langbein (2008), which is similar to 
power-law noise but has an extra parameter that enables the noise to flatten at very 
low frequencies. To investigate its merits, we have also analyzed our data using a 
GGM plus white noise model. In addition we included a standard fifth-order 
autoregressive model, AR(5). Examples of the estimated spectra are shown in Figures 
7 to 10  for the East and North components, for the stations MONM and VACS. 
 

Figure 11– The spectral index κ estimated in time-series with 1000 and 
3000 days and various percentages of missing data 

Figure 13– The estimated trend uncertainty in time-series with 1000 
and 3000 days and various percentages of missing data 

Figure 11 shows that spectral index κ is underestimated in both 
time-series although the longer time-series is closer to the true 
value of -0.9. This Figure also shows that for increasing number 
of missing data, the maximum likelihood estimation results in a 
more whiter noise than actually exist within the data.  

The trend uncertainty is almost entirely determined by the 
length of the time-series and as Figure 13 shows, almost 
insensitive to the amount of missing data. In fact, due to the 
decrease in estimated spectral index, the trend uncertainty 
decreases slightly with increasing number of missing data. For 
the short time-series (N=1000) there is so little data left when 
the percentage of missing data is larger than 60% that the trend 
error increases rapidly. The same happens for the longer time-
series of N=3000 days but only at percentages of 98%. 
Figures 11 and 13 also shows that it worse to have a single large 
block with missing data then to have small gaps randomly 
distributed over the time-series. 

The GNSS stations are located in very different parts of the 
world and we have investigated if they have different noise 
properties of the data. Figures 5 and 6 show spectral 
density plots of the residuals (observed position minus 
estimated linear trend plus a yearly and twice yearly signal 
and offsets). All stations show white noise at the high 
frequencies and a power-law behavior at the low 
frequencies. The slope of this power-law behavior is called 
the spectral index (κ). However, from these 2 figures no 
clear difference in magnitude of the noise levels can be 
detected. 

Figure 8– MONM North component power spectra 

Figure 10 – VACS North component power spectra 

Table 1 shows that several time-series are suffering from missing data. Less data will 
have an effect on how well we can retrieve the correct stochastic properties of the 
GNSS data. To investigate this better we created synthetic time-series with power-
law plus white noise, similar to those shown in Figure 6 (North component). The 
spectral index κ was set -0.9 which is close to flicker noise (κ=-1). The length was 
chosen to be 1000 days (~3 years) and 3000 days (~8 years). From these time-series 
various percentages of data were eliminated. These gaps were chosen to be 1) one 
whole block/segment, randomly positioned or 2) single daily gaps, randomly 
distributed over the whole the time-series. For each percentage of data gaps, 100 
synthetic time-series were generated, both for a single block of missing data and 
missing data distributed throughout the time-series. The mean estimated spectral 
indices, the variance of the estimated trend, and the mean estimated trend errors  
for these synthetic time-series are plotted in Figures 11, 12 and 13 respectively. 

Figure 4– STHL North 
component time series 

Station Length (years) gaps (%) Monument type 

UFAB 1.6 47 
Metallic Mast 

Roof Top 
Local Mount 

DVAO 2.1 4 
Concrete Pillar 

Roof Top 
SEGAL mount 

MONM 3.7 32 
Metallic Mast 

Roof Top 
Local Mount 

STHL 4.2 3 
Concrete Pillar 

2m ground  
SEGAL mount 

NATL 5.8 47 
Concrete Pillar 

2m ground  
SCIGN mount 

VACS 6.1 4 
Concrete Pillar 
1.5m ground  

SEGAL mount 

UFAB and MONM were installed in collaboration with local partners who already were running 
their own systems. A second receiver was installed sharing the existing antenna. 

Figure 12– The estimated trend in time-series with 1000 and 3000 days 
and various percentages of missing data 


