Multi-GNSS Based Processing at the USNO

S. Byram and C. Hackman
United States Naval Observatory, Washington DC, USA

Purpose
- Describe Experimental Processing of Multi-GNSS Based Products
- Focus on Ultra-Rapid
- Compare to Similar GPS-based Signal Processing
- Future Plans

Software Setup & Processing
- Generated Using Bernese 5.0 Software or Bernese 5.2 Software (as noted)
- A Priori: Most Recent IGS Ultra-rapid GNSS Clocks, ERPs, and Orbits (IGV)
- 27 or 40 (Long-arc) hour Observation Window with GPS+GLONASS Observations (as noted)
- Network Processing (Ultra-Rapids and Rapids):
 - Use Subset of the Available Stations that Define the IGB08 Reference Frame
 - 25% of Stations Receive GLONASS + GPS Signals
 - Estimate GNSS Satellite Orbits, EOP, Receiver- and Satellite-Clock Offsets
 - Precise Point Positioning (PPP) (Rapids):
 - Remaining Available Stations Yield Receiver Clock Estimates
 - Network Solutions as PPP Inputs
 - No Process Tuning to Account for GLONASS Signal Difference or Biases

Future Plans
- Explore and Implement GLONASS Observations Processing Enhancements
- Incorporate into IGS Final Troposphere Estimates (Improve Estimates at Higher Latitude Stations?)
- Inclusion into IGV Combination?
- Test 40 hr Long-arc Solution in Bernese 5.2

Conclusions
- GLONASS Signal Processing Integrated into Experimental Ultra-Rapid-like Product
- Updated Models and Processing in Bernese 5.2 Show Improvement as Does 40 hr Long-arc Solution
- Process Enhancements Still Needed for Using GLONASS Data

Comparison to 40 hr Long-arc Ultra-Rapid Solution
- Comparison of 27 hr Arc GLO+GPS Solution, 40 hr Long-arc GLO+GPS, and GPS Based Solutions wrt IGV/IGV Combinations
- Different Baselines and Station Set Used
- All Processed with Bernese 5.0

Helmet Transformation
- 7-Parameter Helmert Transformation wrt IGV/IGV Ultra-Rapid Orbit Combination

Significant Improvement in RMS for 40 hr Arc Over 27 hr Arc

Earth Orientation
- Difference in the Polar Motion wrt IGV
- Significant Improvement in the X Direction Polar Motion 40 hr Arc Over 27 hr Arc GLO+GPS

Comparison to Bernese 5.2 Processing
- Comparison of 27 hr Arc GLO+GPS Solution to IGV/IGV Combinations
- Different Baselines and Station Set Used

Observed 24 hrs
- 7-Parameter Helmert Transformation wrt IGV/IGV Ultra-Rapid Orbit Combination

Predicted 6 hrs
- 7-Parameter Helmert Transformation wrt IGV/IGV Ultra-Rapid Orbit Combination

Software Setup & Processing
- Generated Using Bernese 5.0 Software or Bernese 5.2 Software (as noted)
- A Priori: Most Recent IGS Ultra-rapid GNSS Clocks, ERPs, and Orbits (IGV)
- 27 or 40 (Long-arc) hour Observation Window with GPS+GLONASS Observations (as noted)
- Network Processing (Ultra-Rapids and Rapids):
 - Use Subset of the Available Stations that Define the IGB08 Reference Frame
 - 25% of Stations Receive GLONASS + GPS Signals
 - Estimate GNSS Satellite Orbits, EOP, Receiver- and Satellite-Clock Offsets
 - Precise Point Positioning (PPP) (Rapids):
 - Remaining Available Stations Yield Receiver Clock Estimates
 - Network Solutions as PPP Inputs
 - No Process Tuning to Account for GLONASS Signal Difference or Biases

Future Plans
- Explore and Implement GLONASS Observations Processing Enhancements
- Incorporate into IGS Final Troposphere Estimates (Improve Estimates at Higher Latitude Stations?)
- Inclusion into IGV Combination?
- Test 40 hr Long-arc Solution in Bernese 5.2

Conclusions
- GLONASS Signal Processing Integrated into Experimental Ultra-Rapid-like Product
- Updated Models and Processing in Bernese 5.2 Show Improvement as Does 40 hr Long-arc Solution
- Process Enhancements Still Needed for Using GLONASS Data

USNO Products Available Online: ftp://maia.usno.navy.mil/GPS/

For more information:
Sharyl Byram, US Naval Observatory, 3450 Massachusetts Ave NW, Washington, DC 20392, USA. Telephone: (202) 762-0185. email: sharyl.byram@usno.navy.mil.