1. GNSS-WARP software
All numerical test are performed using in house developed GNSS-WARP (Wroclaw Algorithms for Real-Time Positioning) Software using IGS Real-Time Service (RTS) products. Currently the software is enabled to process GPS and GLONASS data (other constellations can be easily included), both in real-time and post-processing mode (the second one simulates the real-time conditions) for static and kinematic data. It was significantly developed during the COST-STSM-ES1206 mission at University of New Brunswick (UNB). Its performance was verified by comparing the results with the ones derived from UNB PPP software GAPS (GPS Analysis and Positioning Software).

2. Near real-time ZTD model
The NRT ZTD estimation service is organized to monitor the state of troposphere from GPS observations for the area of Poland from the GNSS data obtained from ASG-EUPOS CORS network (~120 stations, see Fig. 2). ZTDs are estimated using Bernese GPS Software 5.0 using based on double-differenced solution with L5/L3 strategy. The quality estimated with respect to the EPN final combined troposphere product and ASG-EUPOS rapid solutions is 8 mm of standard deviation of ZTD differences with average bias of -1.8 mm.

3. Unconstrained PPP solution
Kinematic processing of 0.1Hz GPS data using IGS RTS orbits and clocks gives accurate and precise horizontal coordinates. North and East residuals are below 10cm after the convergence time that is usually between 1 to 2 hours. The Up component is not as well determined, sensitive to number of satellites and highly correlated with estimated troposphere delay. In extreme cases, the residuals are larger than 0.7m, and the error exceeds 20cm. Additionally, some cases were observed when the quality of the solution suddenly got slightly worse for all station simultaneously (see Fig. 3, around 6:45AM), that is probably related with the unexpected jump in RTS clock value of a single satellite.

4. Constraining ZTD with near real-time model
Because the estimated troposphere delay is very unstable and differs from the reference NRT-ZTD solution even for a few centimeters, the idea is to constrain the estimated ZTD by the last result coming from the near real-time processing. In contrast to the previous solution, in this case all three coordinates are accurate and precise, although the error of Up component (5cm on average) is still slightly larger than the error of East and North component (2cm on average). After the solution converged, the height residuals does not exceed 20cm, and are smaller than 15cm for 91% of time. From the very beginning of the data processing, the residuals for all three coordinates are much smaller, even though the estimated error is relatively large. The common cases of sudden degradation of the solution are still present.

5. Conclusions
After processing the 7 days long data from 13 Polish EPN station in PPP kinematic mode, in unconstrained and constrained approach, the mean bias and standard deviation of coordinate residuals (with respect to known EPN coordinates) were calculated. In both approach the results for North and East component are very similar. Only for stations KATO, the constrained approach is more precise. The NRT-ZTD model shifts the height solution by about 1 cm, and the same time stabilize the solution over time. The standard deviation for all station is reduced on average by 40%, from 14cm to 8 cm. The results confirm the usefulness of near real-time troposphere delay models in real-time PPP kinematic processing and a significant improvement should be noticed in unusual or severe weather conditions.

Acknowledgment
This work is supported by the Ministry of Science and Higher Education Research Project No 2012/07/I/ST16/037716, Wroclaw Center of Networking and Supercomputing (http: www.wcss.wroc.pl) computational grant using Matlab Software License No.: 101979 and EU COST Action ES1206. The authors gratefully acknowledge IGS for providing real-time streams.