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From the earthquake cycle to mantle structure -
current and future uses of dense GPS

e Using data from O(103) sites in Japan for inter-/co-/
post-seismic deformation associated with the 2011
Mw 9 Tohoku-oki, Japan earthquake

* Using Earthscope/PBO to image aseismic transients
and their relationship to tremor

e Using dense networks to measure the response to
ocean tidal loads and thus constrain depth
variations in elastic and density parameters in the
upper mantle.




Seismogenic Behavior of Subduction Megathrusts
A sampling of important intertwined questions

Do major seismogenic “asperities” only slip seismically?

Do creeping segments only creep?

Role of conditional stability (e.g., near trench)?

Time Scale ==

What are the relationships between post-seismic creep, transients, tremor
and seismicity (rate, repeat intervals, location...)?




2011 March 11
05:46:10 UTC

1 sample/sec GPS observations - sidereally filtered



144°E

140°E 144'E_ 140°E 142°E 144°E

F. Ortega, Ph.D. thesis '

/.

(\\
@)
(4
4
&

r‘.‘ " & G “‘(‘.‘ \ 36'N
&), /4 8 y 2011/03/11 “' 1 A j 2011/04/07 V. 2011/05/17
; N v A ' J to { P ,” to P to
Y ———— (| 2011/04/07 \ (| 2011/05/17 : (| 2011/07/17
e ¥ VA Ifl 20 20 60 80 1 - | At=27][days] |} - | At=41[days]
AR sipm) g f o S r—— =H
. -.'4/ - () ~ \

50k1(a)£‘
2011 Tohoku-Oki, Japan
Co-seismic slip:

e 1sec GPS, DART, seafloor
geodesy 40Ny

e 80 m peak slip over a small
region

e M7.8 aftershock 38N|

Post-seismic afterslip:

e Total time = 1.5 years ‘ HE .

e Negligible overlap of co-/post- i~ 4 R/ A "
seismic

¢ Post-seismic pattern ~constant



Post-seismic (1.5 yrs) Inter-seismic
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Slip transients and Tremor: Cascadia
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Finding Transients

» With no a priori information on the physical mechanisms responsible for
transients, we cannot only assume time functions corresponding to specific
physical descriptions, i.e. exponential or logarithmic decay

» Use a flexible time parameterization using functions that resemble our
expectation of transients (over-complete dictionary of “behaviors”)

* Secular and periodic components + integrated 3rd-order B-splines of different
scales and center times (not orthogonal)
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Penalize the # of non-zero coefficients in m: m = argmin ||[d — Gm||5 + \||m||
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Sparsity-Promoting Regularization

Penalize the number of non-zero coefficients in m:

m = argmin ||d — Gm||5 + A\||m||o
m

where || * llo = Lo-pseudo-norm, or the “counting norm”
Sparse-compression: represent time series by a small set of Bi-splines
But using the Lo-pseudo-norm is a hard combinatorial problem

Use Li-norm relaxation (iterative reweighting) to make problem convex (Candes
et al., 2007):

m = argmin ||d — Gm||5 + \||m||
m
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Slip transients and Tremor: Cascadia
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Spatial Sparsity Weighting for Cascadia
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ALBH GPS Time Series

» Use sparsity-promoting regularization to fit time series and determine elements
of m with the largest amplitudes (effectively we are compressing the data)

 Form reduced G and estimate reduced m using standard least squares:

Displacement (mm)

weeks)
N |
O R B
w U o

B’ -spline duration (

=

N O B

U NN W
T T

=
D N
T

-10 -5 0

Coefficient amplitude (mm)

i
+2 005e3

S

10

o

2006.0 2006.9 2007.9 2008.8 2009.8 2010.7 2011.7

Year

+ Episodic SSE reconstruction
with only 6 Bi-splines

+ Bi-spline scalogram: Localized,
high amplitudes for short duration
Bi-splines



Posterior Uncertainties

« Standard least squares formulation allows for estimation of posterior
covariances for Bi-spline coefficients:

Cr = (GTCg1é)_1

» Extend to posterior covariances for data fit:

C, = GC,GT

/
Displacement (mm)

\ + Posterior data covariance matrix
\ for modeled transient displacement
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Cascadia 2010 SSE: Slip rate + tremor
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Issues (not addressed today)

Controls on location and temporal evolution?
Role of fluids? Ubiquitous, yes/no/why?

Relationship to regions of big EQ and
eventual post-seismic deformation?

Relationship to forearc/slab structure?

Approach

Detect/reconstruct/model transient ground
deformation in GPS time series due to SSE
using sparsity-based approaches

Time-dependent slip using Network Inversion
Filter: Segall and Matthews (1997)

Slab interface: McCrory et al. (2004)

Tremor epicenter locations: Pacific Northwest
Seismic Network (http://www.pnsn.org/tremor)
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Measuring OTL response
with dense GPS networks
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OTL response as an opportunity:
Constraining properties of the upper mantle
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M2 Tide Predictions 0.00 hours
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M2 Tide Observations 0.00 hours
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Observations Forward Model Residuals
PREM & FES2012

A M2 Tide Observations
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Goal: Elastic and density structure of a craton



From the earthquake cycle to mantle structure -
current and future uses of dense GPS

e Tohoku-oKki

- Relatively constant pattern of post-seismic after slip (with notable exceptions)
- Lack of overlap between co-seismic/post-seismic distribution of fault slip

- Consistency of co-seismic and inter-seismic

- Consistency of co-seismic and post-seismic

- Importance of high-rate GPS (and in near real time)

e Cascadia aseismic transients

- New rigorous methods for automatic transient detection based on sparsity and
overcomplete dictionaries.
- Slip transients and tremor co-located in space and time

 OTL load response to probe upper mantle structure

- Ability to separate depth variation of density and elastic moduli.
- Needs careful analysis of sensitivity to processing approach
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